The 10 top articles of 2022

We explored everything from the science behind the new F1 car to a look back at how the operations science team addressed a challenge of almost unimaginable complexity.

The articles below, presented in chronological order, are ones that appealed most to our science- and technology-curious readers.

  1. Learn how a combination of deep learning, natural language processing, and computer vision enables Amazon to hone in on the right amount of packaging for each product. Over the past six years this effort has reduced per-shipment packaging weight by 36% and eliminated more than a million tons of packaging, equivalent to more than 2 billion shipping boxes.

  2. Image shows the 2022 F1 car sitting in profile on a racetrack with viewing stands in the background
    The F1 engineering team collaborated with AWS to explore the science of how cars interact when racing in close proximity.
    F1

    “Nobody designs a car to come in second,” observed Pat Symonds, chief technical officer at FORMULA 1. “But for this project, we were looking at how cars perform in the wake of another car, as opposed to running in clean air.”

    Instead of relying on time-consuming and costly physical tests, F1 used computational fluid dynamics, which provides a virtual environment to study the flow of fluids (in this case the air around the F1 car) without ever having to manufacture a single part.

    Learn how the F1 engineering team collaborated with Amazon Web Services to develop new design specifications to help make races more competitive.

  3. Since 2018, Amazon Music customers in the US who aren’t sure what to choose have been able to converse with Alexa. The technical complexity of this challenge is hard to overstate, but progress in machine learning (ML) at Amazon has recently made the Alexa music recommender experience even more successful and satisfying for customers.

    To achieve that, the Amazon Music Conversations team developed the next-generation of conversation-based music recommender, one that harnesses ML to bring the Alexa music recommender closer to being a genuine, responsive conversation.

    Learn how the Amazon Music Conversations team is using pioneering machine learning to make Alexa's discernment better than ever.

  4. Earlier this year, Amazon Web Services expanded the widely popular MLU course offerings with MLU Explain, a public website containing visual essays that incorporate fun animations and “scrolly-telling” to explain machine learning concepts in an accessible manner.

    “MLU Explain is a series of interactive articles covering core machine learning concepts, and they're meant to provide supplementary material that's educational within a light, but still informative format,” said Jared Wilber, a data scientist who both teaches some of the MLU courses as well as develops fascinating visual explainers (like the one below) for those courses.

    This animation is from an MLU Explains article that explains the Receiver Operating Characteristic Curve (ROC) curve, how it works with a live interactive example, and how it relates to Area Under The Curve (AUC).
    This animation is from an MLU Explains article that explains the Receiver Operating Characteristic Curve (ROC) curve, how it works with a live interactive example, and how it relates to Area Under The Curve (AUC).

    “There are so many people who have very strong technical skills, but who don’t know a ton about machine learning,” he says. “So, our goals for MLU are twofold: the first is to teach machine learning to people who have no experience with how it works and how they can use it, and the second is to help people who already have some experience and want to sharpen their skills.”

    Learn how the MLU Explain articles are helping Wilber and his team meet those goals.

  5. The AI stack at the center of the Zoox driving system broadly consists of three processes, which occur in order: perception, prediction, and planning. These equate to seeing the world and how everything around the vehicle is currently moving, predicting how everything will move next, and deciding how to move from A to B given those predictions.

    “Predicting the future — the intentions and movements of other agents in the scene — is a core component of safe, autonomous driving,” says Kai Wang, director of the Zoox Prediction team.

    This two framed animation shows Zoox's software making predictions about movements on the left, on the right is the camera view of those same pedestrians crossing the street as the vehicle is stopped
    An example of a Zoox vehicle negotiating a busy intersection in Las Vegas at night. The green boxes show the most likely prediction for each agent in the scene as far as 8 seconds into the future.

    Learn how the combination of cutting-edge hardware, sensor technology, and bespoke machine learning approaches can predict trajectories of vehicles, people, and even animals, as far as eight seconds into the future.

  6. “This project uses a combination of various techniques,” said Andrea Qualizza, a SCOT senior principal scientist. “There is mathematical optimization, local search, capacitated vehicle routing problem solvers — all of that came together because these techniques considered various aspects of the problem and linked them very naturally with the way our systems work."

    That project — Customer Order and Network Density OptimizeR or CONDOR — is notable because of it ability to determine the right tradeoff between the levels of complexity and optimality.

    “We can enable carriers to deliver more packages to more customers on time, while reducing miles driven and carbon emissions from fuel,” Qualizza said. “That is the essence of CONDOR; it revisits all those decisions and finds those opportunities for us to further delight customers.”

    Learn how CONDOR has led to improved delivery routes.

  7. For humans, finding and fetching a bottle of ketchup from a cluttered refrigerator without toppling the milk carton is a routine task. For robots, this remains a challenge of epic complexity.

    At Amazon, scientists are addressing this challenge by teaching robots to understand cluttered environments in three dimensions, locate specific items, and safely retrieve them using a move called the pinch grasp — that unique thumb-and-finger hold that many people take for granted.

    Watch the pinch grasping arm sort through items

    “In robotics, we don’t have the mechanical ability of a five-finger dexterous hand,” said Aaron Parness, a senior manager for applied science at Amazon Robotics AI. “But we are starting to get some of the ability to reason and think about how to grasp. We’re starting to catch up. Where pinch-grasping is really interesting is taking something mechanically simple and making it highly functional.”

    Learn how the pinch grasping robot achieved a ten-fold reduction in damage on items such as books and boxes in tests.

  8. Amazon’s Supply Chain Optimization Technologies organization is responsible for computing the delivery promises Amazon Store customers see when ordering, forecasting demand for its hundreds of millions of products, deciding which products to stock and in what quantitiesallocating stock to warehouses and fulfillment centers (FCs) in anticipation of regional customer needs, offering markdown pricing when necessary, working out how to consolidate customer orders for maximum efficiency, coordinating inbound and inventory management from millions of sellers worldwide, and so much more.

    “At SCOT, using science and technology to optimize the supply chain is not just an enabler, it's our core focus,” says Ashish Agiwal, vice president, Fulfillment Optimization.

    Learn how the SCOT team has evolved over time to meet a challenge of staggering complexity.

  9. The rate of innovation in machine learning is simply off the chart — what is possible today was barely on the drawing board even a handful of years ago. At Amazon, this has manifested in a robotic system that can not only identify potential space in a cluttered storage bin, but also sensitively manipulate that bin’s contents to create that space before successfully placing additional items inside.

    The stowing process

    “Robots and people work together in a hybrid system. Robots handle repetitive tasks and easily reach to the high and low shelves. Humans handle more complex items that require intuition and dexterity. The net effect will be more efficient operations that are also safer for our workers.” Robots and humans working side by side is key to the long-term expansion of this technology beyond retail, said Aaron Parness, Robotics AI senior manager of applied science.

    “Think of robots loading delicate groceries or, longer term, loading dishwashers or helping people with tasks around the house. Robots with a sense of force in their control loop is a new paradigm in compliant-robotics applications.”

    Learn how Amazon Robotics researchers achieved a result that, until recently, was impossible.

  10. When an item comes into an Amazon fulfillment center, employees use barcodes to verify its identity at several different points along its journey to a delivery vehicle. Each time, the item has to be picked up and the barcode located and scanned. Sometimes, the barcode is damaged or even missing.

    Using modalities to generate a digital fingerprint

    That process is repeated millions of times across a massive catalogue of items of varying shapes and sizes, and it can’t easily be automated. Right now, there isn’t a robot versatile enough to manipulate any item that may come into a warehouse and then scan it.

    The solution? Augment or even eliminate the barcode. Or, better still, eliminate the reliance on awkward and inefficient manual item identification altogether.

    That’s what Amazon is researching using multimodal identification, or MMID. This process uses multiple modalities of information — for example, extracting the appearance and dimensions of an item from an image of that item — to automate identification.

    Learn how Amazon researchers are working to eliminate the need for barcodes.

Related content

US, WA, Seattle
Amazon is seeking an experienced, self-directed data scientist to support the research and analytical needs of Amazon Web Services' Sales teams. This is a unique opportunity to invent new ways of leveraging our large, complex data streams to automate sales efforts and to accelerate our customers' journey to the cloud. This is a high-visibility role with significant impact potential. You, as the right candidate, are adept at executing every stage of the machine learning development life cycle in a business setting; from initial requirements gathering to through final model deployment, including adoption measurement and improvement. You will be working with large volumes of structured and unstructured data spread across multiple databases and can design and implement data pipelines to clean and merge these data for research and modeling. Beyond mathematical understanding, you have a deep intuition for machine learning algorithms that allows you to translate business problems into the right machine learning, data science, and/or statistical solutions. You’re able to pick up and grasp new research and identify applications or extensions within the team. You’re talented at communicating your results clearly to business owners in concise, non-technical language. Key job responsibilities • Work with a team of analytics & insights leads, data scientists and engineers to define business problems. • Research, develop, and deliver machine learning & statistical solutions in close partnership with end users, other science and engineering teams, and business stakeholders. • Use AWS services like SageMaker to deploy scalable ML models in the cloud. • Examples of projects include modeling usage of AWS services to optimize sales planning, recommending sales plays based on historical patterns, and building a sales-facing alert system using anomaly detection.
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables
US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We’re seeking a Principal Scientist with a deep expertise in Search Science. Your responsibilities will include everything from developing and prototyping innovative machine learning, and deep learning algorithms to implementing, testing, and supporting full solutions in a production environment. We are looking for innovators who can contribute to advancing search technology on what’s scientifically possible while remaining committed to creating world-class products. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), Earth's most customer-centric company one of the world's leading internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Key job responsibilities As a hands-on leader of this team, you’ll be responsible for defining key research questions, identifying relevant data, adopting or proposing innovative machine learning solutions conducting rigorous experiments, publishing results and working with the engineering team to deploy these solutions. As a strategic leader, you will identify investment opportunities, develop long term strategies, and propose, prioritize and deliver on goals. You’ll also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team Starting in 2009, the Visual Search & Augmented Reality team has thus far launched many visual search solutions on the Amazon App that use computer vision and machine learning/deep learning to help customers complete their shopping missions more easily; multiple internal teams at Amazon (devices, Kindle, Seller services, etc.) also use our libraries and APIs to deliver solutions to their own customers. We are a full stack shop, and our team capabilities cover the whole solution spectrum, ranging across applied science, large scale engineering services, product management, UX design, and mobile app development for iOS and Android.
LU, Luxembourg
&ltHire Relocation Requisition - not for posting> Provides insights to leadership on improving Supply Chain cost and Speed by using Data Science and Analytics techniques. Build Dashboards and models to industrialize these findings at scale.
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to work with business partners to hone complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
Amazon is looking for talented Postdoctoral Scientists to join our global Science teams for a one-year, full-time research position. Postdoctoral Scientists will innovate as members of Amazon’s key global Science teams, including: AWS, Alexa AI, Alexa Shopping, Amazon Style, CoreAI, Last Mile, and Supply Chain Optimization Technologies. Postdoctoral Scientists will join one of may central, global science teams focused on solving research-intense business problems by leveraging Machine Learning, Econometrics, Statistics, and Data Science. Postdoctoral Scientists will work at the intersection of ML and systems to solve practical data driven optimization problems at Amazon scale. Postdocs will raise the scientific bar across Amazon by diving deep into exploratory areas of research to enhance the customer experience and improve efficiencies. Please note: This posting is one of several Amazon Postdoctoral Scientist postings. Please only apply to a maximum of 2 Amazon Postdoctoral Scientist postings that are relevant to your technical field and subject matter expertise. Key job responsibilities * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s vibrant and diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent cutting-edge techniques in your area(s) of expertise.