precision-recall.gif
Amazon Web Services has expanded Machine Learning University courses with MLU Explain, a public website containing visual essays that incorporate animations to explain machine learning concepts in an accessible manner.

Amazon's Machine Learning University expands with MLU Explain

Fun visual essays explain key concepts of machine learning.

Machine learning’s importance to Amazon — and to the world at large — has spurred the need for a large number of people in the workforce to become well-versed in the fundamentals, and to learn how to utilize it for business value.

In machine learning, it's important to find a way to assess the generalization capabilities of a model without having to wait for new data. A new MLU article discusses one of the most common approaches for this task: K-Fold Cross-Validation.

With that objective in mind, in 2016 the company launched Machine Learning University (MLU) as an in-house educational resource for employees. The classes, taught by Amazon experts, are designed to sharpen the skills of current ML practitioners, while also providing novices the ability to learn to deploy machine learning for their own projects.

Related content
Classes previously only available to Amazon employees will now be available to the community.

Then in 2020 — responding to a growing need for ML education and in an effort to lower barriers for those who want to get started with practical machine learning — Amazon opened those courses to the public.

Jared Wilber, a data scientist who both teaches some of the MLU courses as well as develops fascinating visual explainers for those courses, says the goal is to help people — both seasoned veterans and newcomers alike — learn how to use machine learning in their roles.

MLU classes

“There are so many people who have very strong technical skills, but who don’t know a ton about machine learning,” he says. “So, our goals for MLU are twofold: the first is to teach machine learning to people who have no experience with how it works and how they can use it, and the second is to help people who already have some experience and want to sharpen their skills.”

Accelerated Natural Language Processing 1.1 - Course Introduction

MLU offers a range of courses, ranging from beginner to advanced, for the general public and for Amazon employees.

These courses use resources such as Amazon datasets, case studies, and AWS tools to help learners create real-world work product. The courses available to the public include topics such as natural language processing, computer vision, tabular data, and decision trees/ensemble methods.

MLU also offers ten advanced courses for Amazon employees; these 36-hour courses are delivered in three-hour blocks for two weeks. Advanced topics include deep learning, reinforcement learning, mathematical fundamentals for machine learning, probabilistic graphical models, and ML production.

MLU Explain

Now, Amazon Web Services has further expanded MLU with MLU Explain, a public website containing visual essays that incorporate fun animations and “scrolly-telling” to explain machine learning concepts in an accessible manner.

This animation is from an MLU Explains article that explains the Receiver Operating Characteristic Curve (ROC) curve, how it works with a live interactive example, and how it relates to Area Under The Curve (AUC).
This animation is from an MLU Explains article that explains the Receiver Operating Characteristic Curve (ROC) curve, how it works with a live interactive example, and how it relates to Area Under The Curve (AUC).

“MLU Explain is a series of interactive articles covering core machine learning concepts, and they're meant to provide supplementary material that's educational within a light, but still informative format,” Wilber says. “Currently we have eight articles available, including articles on bias variance trade-off, the random forest algorithm, and two articles on double descent.”

Related content
How Jared Wilber is using his skills as a storyteller and data scientist to help others learn about machine learning.

Wilber points out that the second essay of the two-part series on the double descent phenomenon contains novel research by his colleague Brent Werness, MLU’s lead instructor who also is an AWS research scientist.

“That’s an example of something we try to do with every essay: try to present like a little cool thing that is often overlooked, even in textbooks. We ask ourselves, ‘What's something we could add that's often overlooked?’”

One of the MLU visual essays is “The Importance of Data Splitting,” which illustrates the concept of data splitting, or when data is divided into two more subsets. The article uses animations of dogs and cats being separated by species to communicate the concept.

This animation is from an MLU Explains article that teaches the concepts of data splitting in machine learning using an example model that attempts to determine whether animals are cats or dogs.
This animation teaches the concepts of data splitting in machine learning using an example model that attempts to determine whether animals are cats or dogs.

“This is a machine learning model trained in a browser,” Wilber says. “So, if you move the dogs around, such as for the characteristic of ‘fluffiness,’ you can see that the decision boundary moves itself. It’s pretty fun.

“The goal is to make interacting with these systems as unintimidating and fun as possible. We want to make it accessible for everyone.”

MLU Explain articles

The most recent articles posted on MLU Explain include:

  • Train, Test, and Validation Sets: This article teaches the concepts of data splitting in machine learning using an example model that attempts to determine whether animals are cats or dogs. The model is live in the browser, and users can explore using the algorithm by dragging the cat and dog icons around.
  • ROC & AUC: These are tools to understand an algorithm’s outputs, and to determine an acceptable level of false negatives and false positives. These techniques were first used during World War II to analyze radar signals.
  • Precision & Recall: “When evaluating classification models, practitioners need to account for more than just accuracy,” Wilber says. “Precision and recall are two popular alternatives to understand the consequences of your model’s outputs.”
  • Random Forest: An article exploring “how the majority vote and well-placed randomness can extend the decision-tree model to one of machine learning's most widely used algorithms, the Random Forest.”

What's next for MLU-Explain?

As for the future of MLU-Explain, Wilber says several new ideas are on the table.

The first is to consider doing deeper dives into certain important machine learning topics, which Wilber calls “high-surface” topics, such as articles on popular algorithms like gradient descent, logistic regression, and neural networks (all currently in development).

This MLU Explains animation illustrates “how the majority vote and well-placed randomness can extend the decision-tree model to one of machine learning's most widely used algorithms, the Random Forest.”
This animation illustrates “how the majority vote and well-placed randomness can extend the decision-tree model to one of machine learning's most widely used algorithms, the Random Forest.”

“We want to expand the material to cover concepts typically taught in an introductory machine learning course.” This includes covering concepts in new MLU offerings, such as the new course on time series by Lucía Santamaría, an MLU applied scientist based in Europe who also worked on the decision tree visual essay.

More on MLU
Decision trees class gives students access to cutting-edge instruction on key machine-learning topic.

After that, Wilber plans to tackle more complex topics.

“We’d like to eventually cover topics pertaining to deep learning, like attention-mechanisms, neural network architectures, etc. MLU has a close relationship with the D2L team [authors of the Dive Into Deep Learning textbook] and we plan to author companion articles to concepts covered in their book — which is amazing, for the record.”

Related content
The newest chapter addresses a problem that often bedevils nonparametric machine learning models.

Further down the road, Wilber envisions broadening the set of assets to add self-assessments, open contributions, and even gamification.

“A lot of the algorithms you could think of as a game, where parameters affect game state and outcome,” he observes. “There are definitely opportunities to build on that.”

Wilber sees an opportunity to allow for others to contribute to the effort as well.

“These sorts of interactive documents are difficult to make, so I’ve done my best to make them as easy and open to copy as possible,” he explains. “The code for each article is available open-source, each article references any resources used in its creation, and I’ve created a reusable template for our articles with many of the niceties baked in — so feel free to contribute!”

This animation from MLU Explains is meant to help students understand the tradeoff between under- and over-fitting models and how it relates to bias and variance.
This animation is meant to help students understand the tradeoff between under- and over-fitting models and how it relates to bias and variance.

Whatever the path, Wilber says he hopes these assets can help people both at Amazon and externally learn how to make the best use of a rapidly expanding technology.

All MLU-Explain articles are available for free to anyone seeking to learn more about the machine-learning field. To dive deeper into deep-learning topics, Dive into Deep Learning is an interactive book with code, math, and discussions. The book, which has been adopted by 300 universities in 55 countries, is implemented in NumPy/MXNet, PyTorch, and TensorFlow

Research areas

Related content

US, VA, Arlington
The Global Real Estate and Facilities (GREF) team provides real estate transaction expertise, business partnering, space & occupancy planning, design and construction, capital investment program management and facility maintenance and operations for Amazon’s corporate office portfolio across multiple countries. We partner with suppliers to ensure quality, innovation and operational excellence with Amazon’s business and utilize customer driven feedback to continuously improve and exceed employee expectations. Within GREF, the newly formed Global Transformation & Insights (GTI) team is responsible for Customer Insights, Business Insights, Creative, and Communications. We are a group of builders, creators, innovators and go getters. We are customer obsessed, and index high on Ownership. We Think Big, and move fast, and constantly challenge one another while collaborating on "what else", "how might we", and "how can I help". We celebrate the unique perspectives we each bring to the table. We thrive in ambiguity. The ideal Senior Data Scientist candidate thrives in ambiguous environments where the business problem is known, though the technical strategy is not defined. They are able to investigate and develop strategies and concepts to frame a solution set and enable detailed design to commence. They must have strong problem-solving capabilities to isolate, define, resolve complex problems, and implement effective and efficient solutions. They should have experience working in large scale organizations – where data sets are large and complex. They should have high judgement with the ability to balance the right data fidelity with right speed with right confidence level for various stages of analysis and purposes. They should have experience partnering with a broad set of functional teams and levels with the ability to adjust and synthesize their approaches, assumptions, and recommendations to audiences with varying levels of technical knowledge. They are mentors and strong partners with research scientists and other data scientists. Key job responsibilities - Demonstrate advanced technical expertise in data science - Provide scientific and technical leadership within the team - Stay current with emerging technologies and methodologies - Apply data science techniques to solve business problems - Guide and mentor junior data scientists - Share knowledge about scientific advancements with team members - Contribute to the technical growth of the organization - Work on complex, high-impact projects - Influence data science strategy and direction - Collaborate across teams to drive data-driven decision making
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research and implementation that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Implement and optimize control algorithms for robot locomotion - Support development of behaviors that enable robots to traverse diverse terrain - Contribute to methods that integrate stability, locomotion, and manipulation tasks - Help create dynamics models and simulations that enable sim2real transfer of algorithms - Collaborate effectively with multi-disciplinary teams on hardware and algorithms for loco-manipulation
US, WA, Bellevue
Amazon’s Middle Mile Planning Research and Optimization Science group (mmPROS) is looking for a Senior Research Scientist specializing in design and evaluation of algorithms for predictive modeling and optimization applied to large-scale transportation planning systems. This includes the development of novel machine learning and causal modeling techniques to improve on marketplace optimization solutions. Middle Mile Air and Ground transportation represents one of the fastest growing logistics areas within Amazon. Amazon Fulfillment Services transports millions of packages via air and ground and continues to grow year over year. The scale of this operation challenges Amazon to design, build and operate robust transportation networks that minimize the overall operational cost while meeting all customer deadlines. The Middle Mile Planning Research and Optimization Science group is charged with developing an evolving suite of decision support and optimization tools to facilitate the design of efficient air and ground transport networks, optimize the flow of packages within the network to efficiently align network capacity and shipment demand, set prices, and effectively utilize scarce resources, such as aircraft and trucks. Time horizons for these tools vary from years and months for long-term planning to hours and minutes for near-term operational decision making and disruption recovery. These tools rely heavily on mathematical optimization, stochastic simulation, meta-heuristic and machine learning techniques. In addition, Amazon often finds existing techniques do not effectively match our unique business needs which necessitates the innovation and development of new approaches and algorithms to find an adequate solution. As an Applied Scientist responsible for middle mile transportation, you will be working closely with different teams including business leaders and engineers to design and build scalable products operating across multiple transportation modes. You will create experiments and prototype implementations of new learning algorithms and prediction techniques. You will have exposure to top level leadership to present findings of your research. You will also work closely with other scientists and also engineers to implement your models within our production system. You will implement solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility, and make decisions that affect the way we build and integrate algorithms across our product portfolio.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation with single and dual arm manipulation - Leverage simulation and real-world data collection to create large datasets for model development - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for dexterous manipulation
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement whole body control methods for balance, locomotion, and dexterous manipulation - Utilize state-of-the-art in methods in learned and model-based control - Create robust and safe behaviors for different terrains and tasks - Implement real-time controllers with stability guarantees - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for loco-manipulation - Mentor junior engineer and scientists
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities - Build, adapt and evaluate ML models for life sciences applications - Collaborate with a cross-functional team of ML scientists, biologists, software engineers and product managers
TW, TPE, Hsinchu City
Are you passionate about robotics and research? Do you want to solve real customer problems through innovative technology? Do you enjoy working on scalable research and projects in a collaborative team environment? Do you want to see your science solutions directly impact millions of customers worldwide? At Amazon, we hire the best minds in technology to innovate and build on behalf of our customers. Customer obsession is part of our company DNA, which has made us one of the world's most beloved brands. We’re looking for current PhD or Master students with a passion for robotic research and applications to join us as Robotics Applied Scientist II Intern/Co-ops in 2026 to shape the future of robotics and automation at an unprecedented scale across. For these positions, our Robotics teams at Amazon are looking for students with a specialization in one or more of the research areas in robotics such as: robotics, robotics manipulation (e.g., robot arm, grasping, dexterous manipulation, end of arm tools/end effector), autonomous mobile robots, mobile manipulation, movement, autonomous navigation, locomotion, motion/path planning, controls, perception, sensing, robot learning, artificial intelligence, machine learning, computer vision, large language models, human-robot interaction, robotics simulation, optimization, and more! We're looking for curious minds who think big and want to define tomorrow's technology. At Amazon, you'll grow into the high-impact engineer you know you can be, supported by a culture of learning and mentorship. Every day brings exciting new challenges and opportunities for personal growth. By applying to this role, you will be considered for Robotics Applied Scientist II Intern/Co-op (2026) opportunities across various Robotics teams at Amazon with different robotics research focus, with internship positions available for multiple locations, durations (3 to 6+ months), and year-round start dates (winter, spring, summer, fall). Amazon intern and co-op roles follow the same internship structure. "Intern/Internship" wording refers to both interns and co-ops. Amazon internships across all seasons are full-time positions during vacation, and interns should expect to work in office, Monday-Friday, up to 40 hours per week typically between 9am-6pm. Specific team norms around working hours will be communicated by your manager. Interns should not have other employment during the Amazon work-day. Applicants should have a minimum of one quarter/semester/trimester remaining in their studies after their internship concludes. The robotics internship join dates, length, location, and prospective team will be finalized at the time of any applicable job offers. In your application, you will be able to provide your preference of research interests, start dates, internship duration, and location. While your preference will be taken into consideration, we cannot guarantee that we can meet your selection based on several factors including but not limited to the internship availability and business needs of this role.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities As an Applied Science, you will have access to large datasets with billions of images and video to build large-scale machine learning systems. Additionally, you will analyze and model terabytes of text, images, and other types of data to solve real-world problems and translate business and functional requirements into quick prototypes or proofs of concept. We are looking for smart scientists capable of using a variety of domain expertise combined with machine learning and statistical techniques to invent, design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. About the team Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Prime Air is seeking an experienced Applied Science Manager to help develop our advanced Navigation algorithms and flight software applications. In this role, you will lead a team of scientists and engineers to conduct analyses, support cross-functional decision-making, define system architectures and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. This person must be comfortable working with a team of top-notch software developers and collaborating with our science teams. We’re looking for someone who innovates, and loves solving hard problems. You will work hard, have fun, and make history! Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.