Amazon's Machine Learning University is making its online courses available to the public

Classes previously only available to Amazon employees will now be available to the community.

Machine learning is a field in computational science that analyzes patterns and structures in data to help with learning, reasoning, and decision-making—all without human interaction. Data is the lifeblood of business, and machine learning helps identify signals among the data noise.

More from MLU
Fun visual essays explain key concepts of machine learning.

Machine learning (ML), a subset of artificial intelligence, is at the center of Amazon’s business. It’s used by teams across the company, from the Supply Chain Optimization team to improve its product forecasts, and the Alexa science team to revolutionize daily convenience for customers, to the Amazon Go team for enabling a checkout-free shopping experience, and by the Amazon.com team, in order to enhance customers’ shopping experiences. Moreover, Amazon Sagemaker is an AWS service that provides developers and data scientists the ability to build, train, and deploy machine learning models, attracting customers such as NASA, the National Football League and GE Healthcare.

Machine learning has the potential to transform businesses in all industries, but there’s a major limitation: demand for individuals with ML expertise far outweighs supply. That’s a challenge for Amazon, and for companies big and small across the globe.

Find more free MLU courses

Subscribe to the Machine Learning University YouTube channel to get all of the latest courses. And subscribe to the Amazon Science YouTube channel to learn about the work scientists are doing to bring products and services at Amazon to life.

To help meet that demand, Amazon founded its in-house Machine Learning University (MLU) in 2016. MLU’s curriculum is designed to sharpen the skills of current ML practitioners, while also giving neophytes the tools they need to deploy machine learning for their own projects. Classes are taught by Amazon ML experts.

Three accelerated online courses are now available and will expand to include nine more in-depth courses before year’s end. Beginning in 2021, all MLU classes will be available via on-demand video, along with associated coding materials.

Machine Learning University course on natural language processing
Cem Sazara, an Amazon applied scientist, is the teacher for this Machine Learning University course on natural language processing (NLP). It is one of three initial online courses being offered by MLU. You can find the accompanying course materials on GitHub, and watch the rest of the classes on the Machine Learning University YouTube page.

The first three online courses cover natural language processing (the machine understanding of human language), computer vision (the machine understanding of images and video), and tabular data (machine learning associated to spreadsheet-like tables).

“Machine Learning University got its start from the idea that we were going to have a difficult time finding enough people with ML skills to meet our needs,” says Brent Werness, an AWS research scientist who is, in effect, MLU’s academic director. “Universities can’t develop students with ML skills fast enough for Amazon, much less for all the other companies out there.

Brent Werness and Bree Al-Rashid
Brent Werness, AWS research scientist, and Bree Al-Rashid, who manages the Machine Learning University team, are leading the initiative to bring Amazon's Machine Learning University classes online. This photo was taken prior to the COVID-19 pandemic.
Credit: Dave Quigg

“By going public with the classes, we are contributing to the scientific community on the topic of machine learning, and making machine learning more democratic,” Werness adds. “This field isn’t limited to individuals with advanced science degrees, or technical backgrounds. This initiative to bring our courseware online represents a step toward lowering barriers for software developers, students and other builders who want to get started with practical machine learning.”

MLU courseware is developed via several mechanisms, says Werness. Often, a class will be created to address a specific business problem, such as in computer vision, or natural language processing. In other cases, advances in machine learning suggest changes to the curriculum.

“That way we stay in touch with the business needs, and keep up with advances, such as recent improvements in state-of-the-art AutoML solutions provided by systems like AutoGluon,” says Werness.

MLU’s core curriculum is challenging, and several courses require a multi-week study of the mathematics that are foundational to ML and AI, but the program also now offers accelerated courseware, such as the initial classes being made publicly available, that give students a quick overview of a topic.

Machine Learning University course on computer vision
Rachel Hu, AWS applied scientist, teaches the Machine Learning University course on computer vision. You can find the accompanying course materials on GitHub and watch the rest of the classes on the Machine Learning University YouTube page.

“Instead of a three-class sequence that takes upwards of 18 or 20 weeks to complete, in the accelerated classes we can engage students with machine learning right up front,” says Ben Starsky, MLU program manager. “They can get their hands dirty very quickly in the areas that will provide an opportunity to apply machine-learning concepts to solve business problems. You may not learn everything you need to know in three days, but you’ll know enough to ask, ‘Is this an opportunity for addressing my business problem?’”

MLU classes are taught by Amazon scientists, and some courseware incorporates a textbook, Dive into Deep Learning, written by Amazon scientists Aston Zhang, Mu Li, Zachary Lipton, and Alex Smola. The book offers a detailed yet accessible path toward machine-learning knowledge.

In her work with Amazon students, MLU instructor Rachel Hu says she enjoys the problems they bring into class—an experience she expects to carry over to the public online class.

“When I’m teaching a class for Amazon, I also feel like I’m learning a lot,” says Hu, an AWS applied scientist who previously was a graduate student instructor for an Introduction to Deep Learning class at the University of California, Berkeley. “That’s because students ask great questions. In industry, engineers are solving big problems every day, and those can be really interesting. That also helps us make the courses more relevant to real-world needs.”

Machine Learning University course on tabular data
Paula Grajdeanu, a technical training specialist, teaches this Machine Learning University course on tabular data. You can find the accompanying course materials on GitHub and watch the rest of the classes on the Machine Learning University YouTube page.

Similar to other open-source initiatives, MLU’s courseware will evolve and improve over time based on input from the builder community.

To help make the online classes more engaging, Starsky shipped mobile recording studios to the MLU instructors. “The teachers set up the recording studios in their living rooms or basements,” he says. “That way we get better audio and video than from a webcam on a laptop.”

Demand for machine-learning classes is certain to grow as the technology pervades more and more areas of business. Werness says MLU is currently rebuilding its curriculum, in part to further integrate “Dive into Deep Learning” into class sessions.

“We want to make sure we’re teaching the important things up front and that we’re making good use of students’ time,” he says. “With the transition to working from home, it’s even harder now for class participants to set aside multiple hours of time. We want to be flexible in how people can take these classes.”

Research areas

Related content

US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Python (or R, Matlab, or equivalent) is necessary, and experience with SQL would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Bellevue
As an applied scientist, you will use your experience to initiate the design, development, execution and implementation of scientific research projects. Working closely with fellow research scientists and product managers, you will use your experience in modeling, statistics, and simulation to design models of new policies, simulate their performance, and evaluate their benefits and impacts to cost, reliability, and speed of our fulfillment network. Our teams are looking for experience in network and combinatorial optimization, algorithms, data structures, statistics, and/or machine learning. This position requires superior analytical thinking, and ability to apply their technical and statistical knowledge to identify opportunities for real world applications. You should be able to mine and analyze large data, and be able to use necessary programming and statistical analysis software/tools to do so. Amazon has positions available for Research Scientists in multiple locations across the US and Canada.
US, WA, Virtual Contact Center-WA
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. About the team The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. Within the Science team, our goal is to understand the impact of changing fees on Seller (supply) and Customers (demand) behavior (e.g. price changes, advertising strategy changes, introducing new selection etc.) as well as using this information to optimize our fee structure and maximizing our long term profitability.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies to deliver game changing value to our customers. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon’s Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon’s on-line retail business. As an economist on our team, you will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies with the potential to deliver game changing value to our customers. This is an opportunity for a high-energy individual to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.
US, CA, San Francisco
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of statistical inference, experimentation design, economic theory and machine learning to design new methods and pricing strategies for assessing pricing innovations. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon's Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon's on-line retail business. As an economist on our team, you will will have the opportunity to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in experimentation design, applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US
The Amazon Supply Chain Optimization Technology (SCOT) organization is looking for an Intern in Economics to work on exciting and challenging problems related to Amazon's worldwide inventory planning. SCOT provides unique opportunities to both create and see the direct impact of your work on billions of dollars’ worth of inventory, in one of the world’s most advanced supply chains, and at massive scale. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Knowledge of econometrics and Stata/R/or Python is necessary, and experience with SQL, Hadoop, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. We are looking for an Intern Economist with excellent coding skills to design and develop rigorous models to assess the causal impact of fees on third party sellers’ behavior and business performance. As a Science Intern, you will have access to large datasets with billions of transactions and will translate ambiguous fee related business problems into rigorous scientific models. You will work on real world problems which will help to inform strategic direction and have the opportunity to make an impact for both Amazon and our Selling Partners.