Dive into Deep Learning book authors
Amazon scientists and authors (left to right) Mu Li, Aston Zhang, Zachary Lipton, and Alex Smola.
Credit: Stacy Reilly

Amazon scientists author popular deep-learning book

Dive into Deep Learning combines detailed instruction and math with hands-on examples and code.

Machine learning – a field of computer science that gives a computer the ability to learn – is changing the world. It’s being used to improve weather forecasting, deliver better healthcare, create self-driving cars, and much more. Amazon is a pioneer in the field, and uses machine learning to make product recommendations, detect fraud, forecast demand, power Alexa, run the Amazon Go Store, and more. And, of course, with Amazon SageMaker the company provides developers and data scientists with the ability to build, train, and deploy machine learning (ML) models quickly and at scale.

Dive into Deep Learning gets an update

The book now includes PyTorch and TensorFlow. We asked the authors why they decided to update their deep-learning book.

Demand is exploding for scientists, data scientists and developers proficient in machine learning, with demand far outstripping supply.

To help close that gap, over the past two years a team of Amazon scientists has compiled a book that is gaining wide popularity with universities that teach machine learning, as well as developers who want to up their machine learning game. The book is called Dive into Deep Learning, and it’s an open source, interactive book that teaches the ideas, the mathematical theory, and the code that powers deep learning, all through a unified medium.

Its authors are Aston Zhang, an AWS senior applied scientist; Zachary Lipton, an AWS scientist and assistant professor of Operations Research and Machine Learning at Carnegie Mellon University; Mu Li, AWS principal scientist; and Alex Smola, AWS vice president and distinguished scientist.

Dive into Deep Learning is an open source, interactive book that teaches the ideas, the mathematical theory, and the code that powers deep learning.

Dive into Deep Learning is a book I wish existed when I got started with machine learning,” says Smola. “It’s easy to become engrossed in the general theory of machine learning without the ability to build things. Dive into Deep Learning makes it easy for everyone to experiment and learn. Moreover, this publishing approach forces us, the book’s authors, to focus on effects that are significant in practice. After all, anything that is taught needs to be demonstrated with code and data.”

The book got its start in 2017, when the authors set about teaching the wider ML community how the then-new Gluon interface, an open source deep-learning interface that allowed developers to more easily and quickly build machine learning models.

At the time, there were a number of classic textbooks that taught the mathematics of machine learning and scattered open source implementations of popular deep learning models, but existing resources didn’t combine the qualities of a good textbook with the best parts of a hands-on tutorial. That’s especially problematic, for deep learning, which is largely an empirical discipline. In other words, really understanding how it works requires running experiments. So during an internship at Amazon, Lipton created an open-source project, a casual set of tutorials called Deep Learning: the Straight Dope (now deprecated).

While the project was initially created as source material for a set of hands-on tutorials, it rapidly gained wider traction and began to take the form of a book as an open-source community of contributors joined to refine and expand the offering. As Lipton embarked on a faculty position at CMU, Zhang and Li expanded the coverage of some of its foundational topics , and added many more topics to keep pace with the latest innovations in machine learning. They then created a series of video lectures on deep learning in Chinese, which proved popular with students in China.

“We got a lot of feedback from students who said our lectures were helping them ‘get their hands dirty’,” says Zhang, the book’s lead author. “They asked us to turn our lecture notes into something more like a textbook.”

The goal was to make machine learning more accessible to everyone, says Li. “We wanted to teach concepts ‘just in time,’ giving people concepts at the time they need them to accomplish a particular task,” he says. “We wanted people to have the satisfaction of creating their first model before worrying about more esoteric concepts.”

From the start, one key aspiration of the authors was to make the book enjoyable to read – not an endless trudge. Its writing is conversational and approachable, even for relative novices.

It’s easy to become engrossed in the general theory of machine learning without the ability to build things. Dive into Deep Learning makes it easy for everyone to experiment and learn.
Alex Smola, AWS vice president and distinguished scientist

Still, creating a book that combined accessibility, breadth, and hands-on learning wasn’t easy. To provide convenient access, Dive into Deep Learning is published on GitHub, which also allows GitHub users to suggest changes and new content. The book was created with Jupyter Notebooks, which allows interactive computing with many programming languages.

“One cool thing about Jupyter Notebooks,” says Lipton, “is not only can you write regular text (with Markdown) and code (here, Python), but you can also include clean mathematical typesetting – using the LaTeX plug-in, which allows you to write mathematical expressions cleanly.”

The book also employs the NumPy interface – a Python-based programming library familiar to most students.

Dive into Deep Learning was originally published in Chinese. Subsequently, the authors translated it into English, while also adding many new topics by incorporating feedback from users.

Perhaps the most interesting aspect of the book is its emphasis on learning by doing. Says Lipton: “I always think of computer science and engineering as autodidactic disciplines, and certainly one of the ideas behind the book is to let people try things out quickly. The book lends itself to self-study – you’re not likely to get stuck, even if you are going it alone.”

In a typical chapter, Computer Vision, for example, the authors begin with a discussion of topics such as altering images to enhance a computer’s ability to identify something (in the book’s example, a cat) even if the image is changed through cropping, color, or brightness. At the end, readers are asked to use a data set to help a computer identify 120 different dog breeds. They are walked through how to download the appropriate data set, organize it, and train the model to identify the breeds.

For the most part, the book’s chapters were written by different members of the team, depending on their own interests and expertise. All the authors then reviewed and edited each chapter.

Thus far the book has proven extremely popular and helped cement Amazon’s status as a center for machine learning excellence. Some 70 universities use the book in machine learning classes, a number that’s growing.

“This is a timely, fascinating book, providing not only a comprehensive overview of deep learning principles but also detailed algorithms with hands-on programming code, and moreover, a state-of-the-art introduction to deep learning in computer vision and natural language processing,” said Jiawei Han, Michael Aiken Chair Professor, University of Illinois at Urbana-Champaign, “Dive into this book if you want to dive into deep learning.”

Adds Jensen Huang, founder and CEO of NVIDIA, “Dive into Deep Learning is an excellent text on deep learning and deserves attention from anyone who wants to learn why deep learning has ignited the AI revolution: the most powerful technology force of our time.”

Right now, the authors’ focus is to keep updating and improving the book based on input from its many users. “It’s a two-way collaboration,” says Zhang. “We help its readers with machine-learning know-how, and they provide feedback to us to improve its quality and stay relevant.”

Video: Dive into Deep Learning lecture series

While working on the book, Aston Zhang and Mu Li edited some of its foundational topics, added additional topics, and created a series of video lectures on deep learning in Chinese, which proved popular with students in China. There are 20 videos in total, which you can watch from the playlist below.

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.