Jeff Wilke, who was then Amazon's consumer worldwide CEO, delivering a keynote presentation at re:MARS 2019
Jeff Wilke, who was then Amazon's consumer worldwide CEO, delivering a keynote presentation at re:MARS 2019

The history of Amazon's recommendation algorithm

Collaborative filtering and beyond.

In 2017, when the journal IEEE Internet Computing was celebrating its 20th anniversary, its editorial board decided to identify the single paper from its publication history that had best withstood the “test of time”. The honor went to a 2003 paper called “Amazon.com Recommendations: Item-to-Item Collaborative Filtering”, by then Amazon researchers Greg Linden, Brent Smith, and Jeremy York.

Collaborative filtering is the most common way to do product recommendation online. It’s “collaborative” because it predicts a given customer’s preferences on the basis of other customers’.

“There was already a lot of interest and work in it,” says Smith, now the leader of Amazon’s Weblab, which does A/B testing (structured testing of variant offerings) at scale to enable data-driven business decisions. “The world was focused on user-based collaborative filtering. A user comes to the website: What other users are like them? We sort of turned it on its head and found a different way of doing it that had a lot better scaling and quality characteristics for online recommendations.”

Related content
The story of a decade-plus long journey toward a unified forecasting model.

The better way was to base product recommendations not on similarities between customers but on correlations between products. With user-based collaborative filtering, a visitor to Amazon.com would be matched with other customers who had similar purchase histories, and those purchase histories would suggest recommendations for the visitor.

With item-to-item collaborative filtering, on the other hand, the recommendation algorithm would review the visitor’s recent purchase history and, for each purchase, pull up a list of related items. Items that showed up repeatedly across all the lists were candidates for recommendation to the visitor. But those candidates were given greater or lesser weight depending on how related they were to the visitor's prior purchases.

Related content
How Amazon’s scientists developed a first-of-its-kind multi-echelon system for inventory buying and placement.

That notion of relatedness is still derived from customers’ purchase histories: item B is related to item A if customers who buy A are unusually likely to buy B as well. But Amazon’s Personalization team found, empirically, that analyzing purchase histories at the item level yielded better recommendations than analyzing them at the customer level.

Family ties

Beyond improving recommendations, item-to-item collaborative filtering also offered significant computational advantages. Finding the group of customers whose purchase histories most closely resemble a given visitor’s would require comparing purchase histories across Amazon’s entire customer database. That would be prohibitively time consuming during a single site visit.

The history of Amazon's recommendation algorithm | Amazon Science

The alternatives are either to randomly sample other customers in real time and settle for the best matches found or to build a huge offline similarity index by comparing every customer to every other. Because Amazon customers’ purchase histories can change dramatically in the course of a single day, that index would have to be updated regularly. Even offline indexing presents a huge computational burden.

On average, however, a given product sold on the Amazom Store purchased by only a tiny subset of the site’s customers. That means that inspecting the recent-purchase histories of everyone who bought a given item requires far fewer lookups than identifying the customers who most resemble a given site visitor. Smith and his colleagues found that even with early-2000s technology, it was computationally feasible to produce an updated list of related items for every product on the Amazon site on a daily basis.

Related content
Dual embeddings of each node, as both source and target, and a novel loss function enable 30% to 160% improvements over predecessors.

The crucial question: how to measure relatedness. Simply counting how often purchasers of item A also bought item B wouldn’t do; that would make a few bestsellers like Harry Potter books and trash bags the top recommendations for every customer on every purchase.

Instead, the Amazon researchers used a relatedness metric based on differential probabilities: item B is related to item A if purchasers of A are more likely to buy B than the average Amazon customer is. The greater the difference in probability, the greater the items’ relatedness.

When Linden, Smith, and York published their paper in IEEE Internet Computing, their item-based recommendation algorithm had already been in use for six years. But it took several more years to identify and correct a fundamental flaw in the relatedness measure.

Getting the math right

The problem: the algorithm was systematically underestimating the baseline likelihood that someone who bought A would also buy B. Since a customer who buys a lot of products is more likely to buy A than a customer who buys few products, A buyers are, on average, heavier buyers than the typical Amazon customer. But because they’re heavy buyers, they’re also unusually likely to buy B.

Smith and his colleagues realized that it wasn’t enough to assess the increased likelihood of buying product B given the purchase of product A; they had to assess the increased likelihood of buying product B with any given purchase. That is, they discounted heavy buyers’ increased likelihood of buying B according to the heaviness of their buying.

“That was a large improvement to recommendations quality, when we got the math right,” Smith says.

Related content
Danielle Maddix Robinson's mathematics background helps inform robust models that can predict everything from retail demand to epidemiology.

That was more than a decade ago. Since then, Amazon researchers have been investigating a wide variety of ways to make customer recommendations more useful: moving beyond collaborative filtering to factor in personal preferences such as brands or fashion styles; learning to time recommendations (you may want to order more diapers!); and learning to target recommendations to different users of the same account, among many other things.

In June 2019, during a keynote address at Amazon’s first re:MARS conference, Jeff Wilke, then the CEO of Amazon’s consumer division, highlighted one particular advance, in the algorithm for recommending movies to Amazon’s Prime Video customers. Amazon researchers’ innovations led to a twofold improvement in that algorithm’s performance, which Wilke described as a “once-in-a-decade leap”.

Entering the matrix

Recommendation is often modeled as a matrix completion problem. Imagine a huge grid, whose rows represent Prime Video customers and whose columns represent the movies in the Prime Video catalogue. If a customer has seen a particular movie, the corresponding cell in the grid contains a one; if not, it’s blank. The goal of matrix completion is to fill in the grid with the probabilities that any given customer will watch any given movie.

In 2014, Vijai Mohan’s team in the Personalization group — Avishkar Misra, Jane You, Rejith Joseph, Scott Le Grand, and Eric Nalisnick — was asked to design a new recommendation algorithm for Prime Video. At the time, the standard technique for generating personalized recommendations was matrix factorization, which identifies relatively small matrices that, multiplied together, will approximate a much larger matrix.

Related content
The switch to WebAssembly increases stability, speed.

Inspired by work done by Ruslan Salakhutdinov — then an assistant professor of computer science at the University of Toronto — Mohan’s team instead decided to apply deep neural networks to the problem of matrix completion.

The typical deep neural network contains thousands or even millions of simple processing nodes, arranged into layers. Data is fed into the nodes of the bottom layer, which process it and pass their results to the next layer, and so on; the output of the top layer represents the result of some computation.

Training the network consists of feeding it lots of sample inputs and outputs. During training, the network’s settings are constantly adjusted, until they minimize the average discrepancy between the top layer’s output and the target outputs in the training examples.

Reconstruction

Matrix completion methods commonly use a type of neural network called an autoencoder. The autoencoder is trained simply to output the same data it takes as input. But in-between the input and output layers is a bottleneck, a layer with relatively few nodes — in this case, only 100, versus tens of thousands of input and output nodes.

We had to go and doublecheck and re-run the experiments multiple times, I was giving a hard time to the scientists. I was saying, ‘You probably made a mistake.’
Vijai Mohan

As a consequence, the network can’t just copy inputs directly to outputs; it must learn a general procedure for compressing and then re-expanding every example in the training set. The re-expansion will be imperfect: in the movie recommendation setting, the network will guess that customers have seen movies they haven’t. But when, for a given customer-movie pair, it guesses wrong with high confidence, that’s a good sign that the customer would be interested in that movie.

To benchmark the autoencoder’s performance, the researchers compared it to two baseline systems. One was the latest version of Smith and his colleagues’ collaborative-filtering algorithm. The other was a simple listing of the most popular movie rentals of the previous two weeks. “In the recommendations world, there’s a cardinal rule,” Mohan says. “If I know nothing about you, then the best things to recommend to you are the most popular things in the world.”

To their mild surprise, the item-to-item collaborative-filtering algorithm outperformed the autoencoder. But to their much greater surprise, so did the simple bestseller list. The autoencoder’s performance was “so bad that we had to go and doublecheck and re-run the experiments multiple times,” Mohan says. “I was giving a hard time to the scientists. I was saying, ‘You probably made a mistake.’”

Once they were sure the results were valid, however, they were quick to see why. In a vacuum, matrix completion may give the best overview of a particular customer’s tastes. But at any given time, most movie watchers will probably opt for recent releases over neglected classics in their preferred genres.

Neural network classifiers with time considerations
Amazon researchers found that using neural networks to generate movie recommendations worked much better when they sorted the input data chronologically and used it to predict future movie preferences over a short (one- to two-week) period.

So Mohan’s team re-framed the problem. They still used an autoencoder, but they trained it on movie-viewing data that had been sorted chronologically. During training, the autoencoder saw data on movies that customers had watched before some cutoff time. But it was evaluated on how well it predicted the movies they had watched in the two-week period after the cutoff time.

Because Prime Video’s Web interface displays six movie recommendations on the page associated with each title in its catalogue, the researchers evaluated their system on whether at least one of its top six recommendations for a given customer was in fact a movie that that customer watched in the two-week period after the cutoff date. By that measure, not only did the autoencoder outperform the bestseller list, but it also outperformed item-to-item collaborative filtering, two to one. As Wilke put it at re:MARS, “We had a winner.”

Whether any of the work that Amazon researchers are doing now will win test-of-time awards two decades hence remains to be seen. But Smith, Mohan, and their colleagues will continue to pursue new approaches to designing recommendation algorithms, in the hope of making Amazon.com that much more useful for customers.

Related content

US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Lead design and implement control algorithms for robot locomotion - Develop behaviors that enable the robot to traverse diverse terrain - Develop methods that seamlessly integrate stability, locomotion, and manipulation tasks - Create dynamics models and simulations that enable sim2real transfer of algorithms - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for loco-manipulation - Mentor junior engineer and scientists
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for an Applied Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and science projects, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities We are looking for an Applied Scientist with domain expertise in Computer Vision or Recommendation Systems to lead development of new algorithms and E2E solutions. You will be part of a team of applied scientists and software development engineers responsible for research, design, development and deployment of algorithms into production pipelines. As a technologist, you will also drive publications of original work in top-tier conferences in Computer Vision and Machine Learning. You will be expected to deal with ambiguity! We're looking for someone with outstanding analytical abilities and someone comfortable working with cross-functional teams and systems. You must be a self-starter and be able to learn on the go. About the team In September 2018 Prime Video launched its first full-scale live streaming experience to world-wide Prime customers with NFL Thursday Night Football. That was just the start. Now Amazon has exclusive broadcasting rights to major leagues like NFL Thursday Night Football, Tennis major like Roland-Garros and English Premium League to list few and are broadcasting live events across 30+ sports world-wide. Prime Video is expanding not just the breadth of live content that it offers, but the depth of the experience. This is a transformative opportunity, the chance to be at the vanguard of a program that will revolutionize Prime Video, and the live streaming experience of customers everywhere.
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for a Data Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and big-data challenges, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities - Design and deliver big data architectures for experimental and production consumption between scientists and software engineering. - Develop the end-to-end automation of data pipelines, making datasets readily-consumable by science and engineering teams. - Create automated alarming and dashboards to monitor data integrity. - Create and manage capacity and performance plans. - Act as the subject matter expert for the data structure and usage.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
IN, KA, Bengaluru
The Amazon Smart Vehicles (ASV) science team is seeking a passionate and skilled Applied Scientist with extensive expertise in advanced LLM technologies. This role involves innovating in rapidly evolving areas of AI research, focusing on creating personalized services to enhance drivers' and passengers' experiences. Your work will aim to simplify their lives, keep them informed, entertained, productive, and safe on the road, with direct application to prominent Amazon products. If you have extensive expertise in LLMs, natural language processing, and machine learning, along with experience in high-performing research teams, this could be the perfect opportunity for you. Our dynamic and fast-paced environment demands a high level of independence in decision-making and the ability to drive ambitious research initiatives through to production. You will collaborate closely with other science and engineering teams, as well as business stakeholders, to ensure your contributions are both impactful and delivered with maximum efficiency. Key job responsibilities - Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI) - Work with talented peers to lead the development of novel algorithms and modeling techniques to advance the state of the art with LLMs - Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions About the team This is an exciting moment to lead in AI research and application. As part of the Amazon Smart Vehicles science team, you have the opportunity to shape the future by enhancing information-driven experiences for Amazon customers around the globe. Your work will directly influence customers through innovative products and services powered by language and multimodal technology!
IN, KA, Bengaluru
The Amazon Smart Vehicles (ASV) science team is seeking a passionate and skilled Applied Scientist with extensive expertise in advanced LLM technologies. This role involves innovating in rapidly evolving areas of AI research, focusing on creating personalized services to enhance drivers' and passengers' experiences. Your work will aim to simplify their lives, keep them informed, entertained, productive, and safe on the road, with direct application to prominent Amazon products. If you have extensive expertise in LLMs, natural language processing, and machine learning, along with experience in high-performing research teams, this could be the perfect opportunity for you. Our dynamic and fast-paced environment demands a high level of independence in decision-making and the ability to drive ambitious research initiatives through to production. You will collaborate closely with other science and engineering teams, as well as business stakeholders, to ensure your contributions are both impactful and delivered with maximum efficiency. Key job responsibilities - Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI) - Work with talented peers to lead the development of novel algorithms and modeling techniques to advance the state of the art with LLMs - Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions About the team This is an exciting moment to lead in AI research and application. As part of the Amazon Smart Vehicles science team, you have the opportunity to shape the future by enhancing information-driven experiences for Amazon customers around the globe. Your work will directly influence customers through innovative products and services powered by language and multimodal technology!
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.