Using graph neural networks to recommend related products

Dual embeddings of each node, as both source and target, and a novel loss function enable 30% to 160% improvements over predecessors.

Recommending related products — say, a phone case to go along with a new phone — is a fundamental capability of e-commerce sites, one that saves customers time and leads to more satisfying shopping experiences.

At this year’s European Conference on Machine Learning (ECML), my colleagues and I presented a new way to recommend related products, which uses graph neural networks on directed graphs.

In experiments, we found that our approach outperformed state-of-the-art baselines by 30% to 160%, as measured by hit rate and mean reciprocal rank, both of which compare model predictions to actual customer co-purchases. We have begun to deploy this model in production.

Related content
New modeling approach increases accuracy of recommendations by an average of 7%.

The main difficulty with using graph neural networks (GNNs) to do related-product recommendation is that the relationships between products are asymmetric. It makes perfect sense to recommend a phone case to someone who’s buying a new phone but less sense to recommend a phone to someone who’s buying a case.

A graph can capture that type of asymmetry with a directed edge, which indicates that the relationship between two graph nodes flows in only one direction. But directedness is hard for GNN embeddings — that is, the vector representations produced by GNNs — to capture.

We solve this problem by producing two embeddings of every graph node: one that characterizes its role as the source of a related-product recommendation and one that characterizes its role as the target. We also present a new loss function that encourages related-product recommendation (RPR) models to select products along outbound graph edges and discourages them from recommending products along inbound edges.

Complementry-Product Graph.png
A new approach to using graph neural networks for related-product recommendation produces two embeddings of every graph node: one that characterizes its role as the source of a recommendation and one that characterizes its role as the target.

Because our GNN takes product metadata as an input — as well as the graph structure — it also helps address the problem of cold start, or how to account for products that have only recently been introduced to the catalogue. Finally, we introduce a data augmentation method that helps overcome the problem of selection bias, which arises from disparities in the way information is presented.

Graph building

In our product graph, the nodes represent products, and the node data consists of product metadata — product name, product type, product description, and so on. To add directional edges to the graph, we use co-purchase data, or data on which products tend to be purchased together. These edges may be unidirectional, as when, say, one product is an accessory of another, or bidirectional, if products are co-purchased, but neither depends on the other.

Product Graph.png
In this simplified graph, orange edges (which may be unidirectional or bidirectional) represent product co-purchases, and red edges (which are always bidirectional) represent similarity.

This approach, however, runs the risk of introducing selection bias into the model. In this context, selection bias occurs when customers’ preferential selection of one product reflects greater exposure to that product. To offset that risk, our graph also includes bidirectional edges that we derive from co-view data, or data on which products tend to be viewed together under the same product query. Essentially, the co-view data helps us identify products that are similar to each other.

The product graph thus has two types of edges: edges indicating co-purchases and edges indicating similarity.

GNN embeddings

For each node in the product graph, the GNN produces an embedding, which captures information about the node’s immediate vicinity. We use two-hop embeddings, meaning they factor in information about both a node’s immediate neighbors and those nodes’ neighbors.

Related content
Three papers at CVPR present complementary methods to improve product discovery.

The key to our model is the procedure for generating separate source and target embeddings. For each node, the source embedding factors in all the node’s similarity relationships but only its outbound co-purchase relationships. Contrarily, the target embedding factors in all the node’s similarity relationships but only the inbound co-purchase relationships.

The GNN is multilayered, and each layer takes in the node representations produced by the layer below and outputs new node representations. At the first layer, the representations are simply the product metadata, so the source and target embeddings are the same. Beginning at the second layer, however, the source and target embeddings diverge.

Thereafter, the source embedding for each node factors in the target embeddings of the nodes with which it has outbound co-purchase relationships and the source embeddings of the nodes with which it has similarity relationships. The target embedding for each node factors in the source embeddings of the nodes with which it has inbound co-purchase relationships and the target embeddings of the similar nodes.

Graph + Dual Embeddings_2.png
The dual embeddings (right) corresponding to the sample product graph (left). The suffix "-s" indicates a source embedding, the suffix "-t" a target embedding.

We train the GNN in a self-supervised way using contrastive learning, which pulls the embedding of a given node and those that share edges with it together, while pushing apart the embedding of the given node and a randomly selected, unconnected node. A term of the loss function also enforces the asymmetry in the source and target embeddings, promoting the incorporation of information about target nodes connected by outbound edges and penalizing the incorporation of information about target nodes connected by inbound edges.

Once the GNN is trained, selecting the k best related products to recommend is simply a matter of identifying the k nodes closest to the source node in the embedding space. In experiments, we compared our approach to its two best-performing predecessors, using hit rate and mean reciprocal rank for the top 5, 10, and 20 recommendations, on two different datasets, for 12 experiments in all. We found that our method outperformed the benchmarks across the board — often by a large margin. You can find more details in our paper.

Related content

US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, MA, North Reading
We are looking for experienced scientists and engineers to explore new ideas, invent new approaches, and develop new solutions in the areas of Controls, Dynamic modeling and System identification. Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Key job responsibilities Applied Scientists take on big unanswered questions and guide development team to state-of-the-art solutions. We want to hear from you if you have deep industry experience in the Mechatronics domain and : * the ability to think big and conceive of new ideas and novel solutions; * the insight to correctly identify those worth exploring; * the hands-on skills to quickly develop proofs-of-concept; * the rigor to conduct careful experimental evaluations; * the discipline to fast-fail when data refutes theory; * and the fortitude to continue exploring until your solution is found We are open to hiring candidates to work out of one of the following locations: North Reading, MA, USA | Westborough, MA, USA
GB, London
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python or R is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: London, GBR
GB, London
Are you excited about applying economic models and methods using large data sets to solve real world business problems? Then join the Economic Decision Science (EDS) team. EDS is an economic science team based in the EU Stores business. The teams goal is to optimize and automate business decision making in the EU business and beyond. An internship at Amazon is an opportunity to work with leading economic researchers on influencing needle-moving business decisions using incomparable datasets and tools. It is an opportunity for PhD students and recent PhD graduates in Economics or related fields. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL would be a plus. As an Economics Intern, you will be working in a fast-paced, cross-disciplinary team of researchers who are pioneers in the field. You will take on complex problems, and work on solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. We are open to hiring candidates to work out of one of the following locations: London, GBR
GB, London
Are you excited about applying economic models and methods using large data sets to solve real world business problems? Then join the Economic Decision Science (EDS) team. EDS is an economic science team based in the EU Stores business. The teams goal is to optimize and automate business decision making in the EU business and beyond. An internship at Amazon is an opportunity to work with leading economic researchers on influencing needle-moving business decisions using incomparable datasets and tools. It is an opportunity for PhD students and recent PhD graduates in Economics or related fields. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL would be a plus. As an Economics Intern, you will be working in a fast-paced, cross-disciplinary team of researchers who are pioneers in the field. You will take on complex problems, and work on solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: London, GBR
GB, London
Are you excited about applying economic models and methods using large data sets to solve real world business problems? Then join the Economic Decision Science (EDS) team. EDS is an economic science team based in the EU Stores business. The teams goal is to optimize and automate business decision making in the EU business and beyond. An internship at Amazon is an opportunity to work with leading economic researchers on influencing needle-moving business decisions using incomparable datasets and tools. It is an opportunity for PhD students and recent PhD graduates in Economics or related fields. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL would be a plus. As an Economics Intern, you will be working in a fast-paced, cross-disciplinary team of researchers who are pioneers in the field. You will take on complex problems, and work on solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: London, GBR
IL, Tel Aviv
Are you passionate about pushing the boundaries of computer vision, generative AI, deep learning, and machine learning? Ready to tackle challenges in document understanding at scale? We’re looking for innovative minds to join our world-class team at AWS, where you’ll collaborate with leading researchers, academics, and engineers on Amazon Textract. Why AWS? Be part of the leading cloud service provider powering innovation and positive impact. Work on real-world problems alongside tech and business giants. Access to unlimited data and computational resources. Collaborate with world-class researchers and developers. Deploy solutions at AWS scale and publish your work at top conferences. Focus Areas: - LLMs, document understanding, scene text recognition. - Visual question answering, NLP+vision, layout understanding. Locations: Tel Aviv and Haifa Think you’re a fit? Dive into the world of AWS Computer Vision and help us innovate at the forefront of technology. Key job responsibilities - Design cutting-edge neural network architectures. - Create document understanding solutions for complex scenarios and large visual datasets. - Set benchmarks and success criteria for model performance. - Collaborate across AWS and Amazon to bring scientific breakthroughs to our customers. - Add your unique creativity to our multidisciplinary team. - Mentor junior scientists and interns/PhD students. We are open to hiring candidates to work out of one of the following locations: Haifa, ISR | Tel Aviv, ISR
IN, KA, Bengaluru
Job Description ATE (Analytics, Technology and Engineering) is a multi-disciplinary team of scientists, engineers, and technicians, all working to innovate in operations for the benefit of our customers. Our team is responsible for creating core analytics, science capabilities, platforms development and data engineering. We develop scalable analytics applications and research modeling to optimize operation processes.. You will work with professional software development managers, data engineers, data scientists, applied scientists, business intelligence engineers and product managers using rigorous quantitative approaches to ensure high quality data tech products for our customers around the world, including India, Australia, Brazil, Mexico, Singapore and Middle East. We are on the lookout for an enthusiastic and highly analytical individual to be a part of our journey. Amazon is growing rapidly and because we are driven by faster delivery to customers, a more efficient supply chain network, and lower cost of operations, our main focus is in the development of strategic models and automation tools fed by our massive amounts of available data. You will be responsible for building these models/tools that improve the economics of Amazon’s worldwide fulfillment networks in emerging countries as Amazon increases the speed and decreases the cost to deliver products to customers. You will identify and evaluate opportunities to reduce variable costs by improving fulfillment center processes, transportation operations and scheduling, and the execution to operational plans. You will also improve the efficiency of capital investment by helping the fulfillment centers to improve storage utilization and the effective use of automation. Finally, you will help create the metrics to quantify improvements to the fulfillment costs (e.g., transportation and labor costs) resulting from the application of these optimization models and tools. Major responsibilities include: · In this role, you will be responsible for developing and implementing innovative, scalable models and tools aimed at tackling novel challenges within Amazon’s global fulfillment network. Collaborating with fellow scientists from various teams, you will work on integrated solutions to enhance fulfillment speed, reduce costs. Your in-depth comprehension of business challenges will enable you to provide scientific analyses that underpin critical business decisions, utilizing a diverse range of methodologies. You’ll have the opportunity to design scientific tool platforms, deploy models, create efficient data pipelines, and streamline existing processes. Join us in shaping the future of Amazon’s global retail business by optimizing delivery speed at scale and making a lasting impact on the world of e-commerce. If you’re passionate about solving complex problems and driving innovation, we encourage you to apply. About the team This team is responsible for applying science based algo and techniques to solve the problems in operation and supply chain. Some of these problems include, volume forecasting, capacity planning, fraud detection, scenario simulation and using LLM/GenAI for process efficiency We are open to hiring candidates to work out of one of the following locations: Bengaluru, KA, IND
LU, Luxembourg
Have you ever wished to build high standard Operations Research and Machine Learning algorithms to optimize one of the most complex logistics network? Have you ever ordered a product on Amazon websites and wondered how it got delivered to you so fast, and what kinds of algorithms & processes are running behind the scenes to power the whole operation? If so, this role is for you. The team: Global transportation services, Research and applied science - Operations is at the heart of the Amazon customer experience. Each action we undertake is on behalf of our customers, as surpassing their expectations is our passion. We improve customer experience through continuously optimizing the complex movements of goods from vendors to customers throughout Europe. - Global transportation analytical teams are transversal centers of expertise, composed of engineers, analysts, scientists, technical program managers and developers. We are focused on Amazon most complex problems, processes and decisions. We work with fulfillment centers, transportation, software developers, finance and retail teams across the world, to improve our logistic infrastructure and algorithms. - GTS RAS is one of those Global transportation scientific team. We are obsessed by delivering state of the art OR and ML tools to support the rethinking of our advanced end-to-end supply chain. Our overall mission is simple: we want to implement the best logistics network, so Amazon can be the place where our customers can be delivered the next-day. The role: Applied scientist, speed and long term network design The person in this role will have end-to-end ownership on augmenting RAS Operation Research and Machine Learning modeling tools. They will help understand where are the constraints in our transportation network, and how we can remove them to make faster deliveries at a lower cost. You will be responsible for designing and implementing state-of-the-art algorithmic in transportation planning and network design, to expand the scope of our Operations Research and Machine Learning tools, to reflect the constantly evolving constraints in our network. You will enable the creation of a product that drives ever-greater automation, scalability and optimization of every aspect of transportation, planning the best network and modeling the constraints that prevent us from offering more speed to our customer, to maximize the utilization of the associated resources. The impact of your work will be in the Amazon EU global network. The product you will build will span across multiple organizations that play a role in Amazon’s operations and transportation and the shopping experience we deliver to customer. Those stakeholders include fulfilment operations and transportation teams; scientists and developers, and product managers. You will understand those teams constraints, to include them in your product; you will discuss with technical teams across the organization to understand the existing tools and assess the opportunity to integrate them in your product.You will engage with fellow scientists across the globe, to discuss the solutions they have implemented and share your peculiar expertise with them. This is a critical role and will require an aptitude for independent initiative and the ability to drive innovation in transportation planning and network design. Successful candidates should be able to design and implement high quality algorithm solutions, using state-of-the art Operations Research and Machine Learning techniques. Key job responsibilities - Engage with stakeholders to understand what prevents them to build a better transportation network for Amazon - Review literature to identify similar problems, or new solving techniques - Build the mathematical model representing your problem - Implement light version of the model, to gather early feed-back from your stakeholders and fellow scientists - Implement the final product, leveraging the highest development standards - Share your work in internal and external conferences - Train on the newest techniques available in your field, to ensure the team stays at the highest bar About the team GTS Research and Applied Science is a team of scientists and engineers whom mission is to build the best decision support tools for strategic decisions. We model and optimize Amazon end-to-end operations. The team is composed of enthusiastic members, that love to discuss any scientific problem, foster new ideas and think out of the box. We are eager to support each others and share our unique knowledge to our colleagues. We are open to hiring candidates to work out of one of the following locations: Luxembourg, LUX
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI Labs. This group is entrusted with developing core data mining, natural language processing, deep learning, and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA | Santa Clara, CA, USA | Seattle, WA, USA