How computer vision will help Amazon customers shop online

Three papers at CVPR present complementary methods to improve product discovery.

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) is the premier conference in the field of computer vision, and the Amazon papers accepted there this year range in topic from neural-architecture search to human-pose tracking to handwritten-text generation.

But retail sales are still at the heart of what Amazon does, and three of Amazon’s 10 CVPR papers report ways in which computer vision could help customers shop for clothes.

One paper describes a system that lets customers sharpen a product query by describing variations on a product image. The customer could, for instance, alter the image by typing or saying “I want it to have a light floral pattern”.

A second paper reports a system that suggests items to complement those the customer has already selected, based on features such as color, style, and texture.

The third paper reports a system that can synthesize an image of a model wearing clothes from different product pages, to demonstrate how they would work together as an ensemble. All three systems use neural networks.

Outfit composite.png
A query image (left) is combined with images from different product pages to produce a synthetic composite (right).

Visiolinguistic product discovery

Using text to refine an image that matches a product query poses three main challenges. The first is finding a way to fuse textual descriptions and image features into a single representation. The second is performing that fusion at different levels of resolution: the customer should be able to say something as abstract as “Something more formal” or as precise as “change the neck style”. And the third is training the network to preserve some image features while following customers' instructions to change others.

Yanbei Chen, a graduate student at Queen Mary University of London, who was an intern at Amazon when the work was done; Chen’s advisor, professor of visual computation Shaogang Gong; and Loris Bazzani, a senior computer vision scientist at Amazon, address these challenges with a neural network that’s trained on triples of inputs: a source image, a textual revision, and a target image that matches the revision.

Essentially, the three inputs pass through three different neural networks in parallel. But at three distinct points in the pipeline, the current representation of the source image is fused with the current representation of the text, and the fused representation is correlated with the current representation of the target image.

Because the lower levels of a neural network tend to represent lower-level features of the input (such as textures and colors) and higher levels higher-level features (such as sleeve length or tightness of fit), using this “hierarchical matching” objective to train the model ensures that it can handle textual modifications of different resolutions.

Visiolinguistic architecture.png
A new system that enables textual modification of product images fuses visual and linguistic information at three different levels of a neural network, to accommodate different degrees of textual granularity.
Apparel images from the Fashion IQ data set (Xiaoxiao Guo, et al.), used with permission under the Community Data License Agreement.

Each fusion of linguistic and visual representations is performed by a neural network with two components. One component uses a joint attention mechanism to identify visual features that should be the same in the source and target images. The other is a transformer network that uses self-attention to identify features that should change.

In tests, the researchers found that the new system could find a valid match to a textual modification 58% more frequently than its best-performing predecessor.

Complementary-item retrieval

In the past, researchers have developed systems that took outfit items as inputs and predicted their compatibility, but these systems were not optimized for large-scale data retrieval.

Amazon applied scientist Yen-Liang Lin and his colleagues wanted a system that would enable product discovery at scale, and they wanted it to take multiple inputs, so that a customer could, for instance, select shirt, pants, and jacket and receive a recommendation for shoes.

The network they devised takes as inputs any number of garment images, together with a vector indicating the category of each — such as shirt, pants, or jacket. It also takes the category vector of the item the customer seeks.

The images pass through a convolutional neural network that produces a vector representation of each. Each representation then passes through a set of “masks”, which attenuate some representation features and amplify others.

The masks are learned during training, and the resulting representations encode product information (such as color and style) relevant to only a subset of complementary items. That is, some of the representations that result from the masking — called subspace representations — will be relevant to shoes, others to handbags, others to hats, and so on.

Complementarity network.png
The architecture of the neural network used for complementary-item retrieval. From vectors representing the product categories of both input items and a target item, the network produces a set of weights (w1 – wk) that indicate which input-item features should be prioritized in selecting a complementary item.

In parallel, another network takes as input the category for each input image and the category of the target item. Its output is a set of weights, for prioritizing the subspace representations.

The network is trained using an evaluation criterion that operates on the entire outfit. Each training example includes an outfit, an item that goes well with that outfit, and a group of items that do not.

Once the network has been trained, it can produce a vector representation of every item in a catalogue. Finding the best complement for a particular outfit is then just a matter of looking up the corresponding vectors.

In experiments that used two standard measures in the literature on garment complementarity — fill-in-the-blank accuracy and compatibility area under the curve — the researchers’ system outperformed its three top predecessors, while enabling much more efficient item retrieval.

Virtual try-on network

Previously, researchers have trained machine learning systems to synthesize images of figures wearing clothes from different sources by using training data that featured the same garment photographed from different perspectives. But that kind of data is extremely labor intensive to produce.

Senior applied scientist Assaf Neuberger and his colleagues at Amazon’s Lab126 instead built a system that can be trained on single images, using generative adversarial networks, or GANs. A GAN has a component known as a discriminator, which, during training, learns to distinguish network-generated images from real images. Simultaneously, the generator learns to fool the discriminator.

The researchers’ system has three components. The first is the shape generation network, whose inputs are a query image, which will serve as the template for the final image, and any number of reference images, which depict clothes that will be transferred to the model from the query image.

Complementarity system.png
Amazon researchers’ “virtual try-on network” uses a three-step process to synthesize an image of a model wearing garments from different sources.

In preprocessing, established techniques segment all the input images and compute the query figure’s body model, which represents pose and body shape. The segments selected for inclusion in the final image pass to the shape generation network, which combines them with the body model and updates the query image’s shape representation. That shape representation passes to a second network, called the appearance generation network.

The architecture of the appearance generation network is much like that of the shape generation network, except that it encodes information about texture and color rather than shape. The representation it produces is combined with the shape representation to produce a photorealistic visualization of the query model wearing the reference garments.

The third component of the network fine-tunes the parameters of the appearance generation network to preserve features such as logos or distinctive patterns without compromising the silhouette of the model.

The outputs of the new system are more natural looking than those of previous systems. In the figure below, the first column is the query image, the second the reference image, the third the output of the best-performing previous system, and the fourth and fifth the outputs of the new system, without and with appearance refinement, respectively.

Logos.png
From left to right: query samples, reference samples, the previous system’s output, and the new system’s outputs, without and with the appearance refinement network.

Research areas

Related content

US, WA, Bellevue
Imagine being part of an agile team where your ideas have the potential to reach millions of customers. Picture working on cutting-edge, customer-facing solutions, where every team member is a critical voice in the decision making process. Envision being able to leverage the resources of a Fortune 500 company within the atmosphere of a start-up. Welcome to Amazon’s NCRC team. We solve complex problems in an ambiguous space, focusing on reducing return costs and improving the customer experience. We build solutions that are distributed on a large scale, positively impacting experiences for our customers and sellers. Come innovate with the NCRC team! The Net Cost of Refunds and Concessions (NCRC) team is looking for a Senior Manager Data Science to lead a team of economists, business intelligence engineers and business analysts who investigate business problems, develop insights and build models & algorithms that predict and quantify new opportunity. The team instigates and productionalizes nascent solutions around four pillars: outbound defects, inbound defects, yield optimization and returns reduction. These four pillars interact, resulting in impacts to our overall return rate, associated costs, and customer satisfaction. You may have seen some downstream impacts of our work including Amazon.com customer satisfaction badges on the website and app, new returns drop off optionality, and faster refunds for low cost items. In this role, you will set the science vision and direction for the team, collaborating with internal stakeholders across our returns and re-commerce teams to scale and advance science solutions. This role is based in Bellevue, WA Key job responsibilities * Single threaded leader responsible for setting and driving science strategy for the organization. * Lead and provide coaching to a team of Scientists, Economists, Business Intelligence Engineers and Business Analysts. * Partner with Engineering, Product and Machine Learning leaders to deliver insights and recommendations across NCRC initiatives. * Lead research and development of models and science products powering return cost reduction. * Educate and evangelize across internal teams on analytics, insights and measurement by writing whitepapers, knowledge documentation and delivering learning sessions. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, CA, Santa Clara
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Generative AI team helps AWS customers accelerate the use of Generative AI to solve business and operational challenges and promote innovation in their organization. As an applied scientist, you are proficient in designing and developing advanced ML models to solve diverse challenges and opportunities. You will be working with terabytes of text, images, and other types of data to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for talented scientists capable of applying ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others. AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. Key job responsibilities The primary responsibilities of this role are to: Design, develop, and evaluate innovative ML models to solve diverse challenges and opportunities across industries Interact with customer directly to understand their business problems, and help them with defining and implementing scalable Generative AI solutions to solve them Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solutions About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. We are open to hiring candidates to work out of one of the following locations: San Francisco, CA, USA | Santa Clara, CA, USA
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Amazon AGI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. Our goal is to provide conversational, visual and proactive mechanisms to delight customers, increase customer engagement, reduce defects, and enable natural interactions across Amazon touch points (e.g., Alexa, Stores, Mobile). To achieve our mission, we build automated, scalable, self-serve AI systems that use customer, device and ambient signals to offer personalized suggestions, comprehend customer inputs, learn from customer interactions, reduce defects, and propose appropriate actions to serve millions of Amazon customers across the globe. Key job responsibilities As a Principal Applied Scientist, you will be a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You tackle intrinsically hard problems, acquiring expertise as needed and decompose complex problems into straightforward solutions. You align teams toward coherent strategies. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Principal Scientist to help build industry-leading conversational technologies that customers love. Our mission is to push the envelope in Artificial Intelligence (AI), Natural Language Understanding (NLU), Machine Learning (ML), Dialog Management, Automatic Speech Recognition (ASR), and Audio Signal Processing, in order to provide the best-possible experience for our customers We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Are you excited about developing models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for scientists, engineers and program managers for a variety of roles. The Amazon Robotics software team is seeking a collaborative Applied Scientist to focus on computer vision machine learning models. This includes building multi-viewpoint and time-series computer vision systems. It includes building large-scale models using data from many different tasks and scenes. This work spans from basic research such as cross domain training, to experimenting on prototype in the lab, to running wide-scale A/B tests on robots in our facilities. Key job responsibilities * Research vision - Where should we be focusing our efforts * Research delivery – Proving/dis-proving strategies in offline data or in the lab * Production studies - Insights from production data or ad-hoc experimentation. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, NY, New York
We are looking for a motivated and experienced Senior Data Scientist with experience in Machine Learning (ML), Artificial Intelligence (AI), Big Data, and Service Oriented Architecture with deep understanding in advertising businesses, to be part of a team of talented scientists and engineers to innovate, iterate, and solve real world problem with cutting-edge AWS technologies. In this role, you will take a leading role in defining the problem, innovating the ML/AI solutions, and information the tech roadmap. You will join a cross-functional, fun-loving team, working closely with scientists and engineers in a daily basis. You will innovate on behalf of our customers by prototyping, delivering functional proofs of concept (POCs), and partnering with our engineers to productize and scale successful POCs. If you are passionate about creating the future, come join us as we have fun, and make history. Key job responsibilities - Define and execute a research & development roadmap that drives data-informed decision making for marketers and advertisers - Establish and drive data hygiene best practices to ensure coherence and integrity of data feeding into production ML/AI solutions - Collaborate with colleagues across science and engineering disciplines for fast turnaround proof-of-concept prototyping at scale - Partner with product managers and stakeholders to define forward-looking product visions and prospective business use cases - Drive and lead of culture of data-driven innovations within and outside across Amazon Ads Marketing orgs About the team Marketing Decision Science provides science products to enable Amazon Ads Marketing to deliver relevant and compelling guidance across marketing channels to prospective and active advertisers for success on Amazon. We own the product, technology and deployment roadmap for AI- and analytics-powered products across Amazon Ads Marketing. We analyze the needs, experiences, and behaviors of Amazon advertisers at petabytes scale, to deliver the right marketing communications to the right advertiser at the right team to help them make the data-informed advertising decisions. Our science-based products enable applications and synergies across Ads organization, spanning marketing, product, and sales use cases. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
IN, KA, Bangalore
Alexa is the voice activated digital assistant powering devices like Amazon Echo, Echo Dot, Echo Show, and Fire TV, which are at the forefront of this latest technology wave. To preserve our customers’ experience and trust, the Alexa Sensitive Content Intelligence (ASCI) team creates policies and builds services and tools through Machine Learning techniques to detect and mitigate sensitive content across Alexa. We are looking for an experienced Senior Applied Scientist to build industry-leading technologies in attribute extraction and sensitive content detection across all languages and countries. An Applied Scientist will be a tech lead for a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP or CV related tasks. You will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a leader with strong technical experiences a passion for building scientific driven solutions in a fast-paced environment. You should have good understanding of NLP models (e.g. LSTM, transformer based models) or CV models (e.g. CNN, AlexNet, ResNet) and where to apply them in different business cases. You leverage your exceptional technical expertise, a sound understanding of the fundamentals of Computer Science, and practical experience of building large-scale distributed systems to creating reliable, scalable, and high-performance products. In addition to technical depth, you must possess exceptional communication skills and understand how to influence key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. Key job responsibilities You'll lead the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. You set examples for the team on good science practice and standards. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. Your work will directly impact the trust customers place in Alexa, globally. You contribute directly to our growth by hiring smart and motivated Scientists to establish teams that can deliver swiftly and predictably, adjusting in an agile fashion to deliver what our customers need. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the hiring group About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video. We are open to hiring candidates to work out of one of the following locations: Bangalore, KA, IND
US, WA, Seattle
Amazon Web Services (AWS) is building a world-class marketing organization, and we are looking for an experienced Applied Scientist to join the central data and science organization for AWS Marketing. You will lead AWS Measurement, targeting, recommendation, forecasting related AI/ML products and initiatives, and own mechanisms to raise the science and measurement standard. You will work with economists, scientists and engineers within the team, and partner with product and business teams across AWS Marketing to build the next generation marketing measurement, valuation and machine learning capabilities directly leading to improvements in our key performance metrics. A successful candidate has an entrepreneurial spirit and wants to make a big impact on AWS growth. You will develop strong working relationships and thrive in a collaborative team environment. You will work closely with business leaders, scientists, and engineers to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable distributed services. The ideal candidate will have experience with machine learning models and causal inference. Additionally, we are seeking candidates with strong rigor in applied sciences and engineering, creativity, curiosity, and great judgment. You will work on high-impact, high-visibility products, with your work improving the experience of AWS leads and customers. Key job responsibilities - Lead the design, development, deployment, and innovation of advanced science models in the strategic area of marketing measurement and optimization. - Partner with scientists, economists, engineers, and product leaders to break down complex business problems into science approaches. - Understand and mine the large amount of data, prototype and implement new learning algorithms and prediction techniques to improve long-term causal estimation approaches. - Design, build, and deploy effective and innovative ML solutions to improve components of our ML and causal inference pipelines. - Publish and present your work at internal and external scientific venues in the fields of ML and causal inference. - Influence long-term science initiatives and mentor other scientists across AWS. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Austin, TX, USA | New York, NY, USA | Santa Clara, CA, USA | Seattle, WA, USA
US, WA, Bellevue
Where will Amazon's growth come from in the next year? What about over the next five? Which product lines are poised to quintuple in size? Are we investing enough in our infrastructure, or too much? How do our customers react to changes in prices, product selection, or delivery times? These are among the most important questions at Amazon today. The Topline Forecasting team in the Supply Chain Optimization Technologies (SCOT) group is looking for innovative, passionate and results-oriented Principal Economist to provide thought-leadership to help answer these questions. You will have an opportunity to own the long-run outlook for Amazon’s global consumer business and shape strategic decisions at the highest level. The successful candidate will be able to formalize problem definitions from ambiguous requirements, build econometric models using Amazon’s world-class data systems, and develop cutting-edge solutions for non-standard problems. Key job responsibilities • You understand the state-of-the-art in time series and econometric modeling. • You apply econometric tools and theory to solve business problems in a fast moving environment. • You excel at extracting insights and correct interpretations from data using advanced modeling techniques. • You communicate insights in a digestible manner to senior leaders in Finance and Operations within the company. • You are able to anticipate future business challenges and key questions, and have the ability to design modeling solutions to tackle them. • You have broad influence over the Topline team’s scientific research agenda and deliverables. • You contribute to the broader Econ research community in Amazon. • You advise other economists on scientific best-practices and raise the bar of research. • You will actively mentor other scientists and contribute to their career development. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | New York, NY, USA