How Prime Video updates its app for more than 8,000 device types

The switch to WebAssembly increases stability, speed.

At Prime Video, we’re delivering content to millions of customers on more than 8,000 device types, such as gaming consoles, TVs, set-top boxes, and USB-powered streaming sticks. When we want to do an update, every one of those devices requires a separate native release, posing a difficult trade-off between updatability and performance.

In the past year, we’ve been using WebAssembly (Wasm), a framework that allows code written in high-level languages to run efficiently on any device, to help resolve that trade-off. Because we are excited to contribute to the Wasm ecosystem, Amazon has joined the Bytecode Alliance, a consortium dedicated to developing secure, efficient, modular, and portable runtime environments built atop standards such as Wasm.

By using Wasm instead of JavaScript for certain elements of the Prime Video app, we’ve reduced the average frame times on a mid-range TV from 28 milliseconds to 18. The worst-case frame times also decreased from 40 milliseconds to 25. And in ongoing work we’re driving the frame time down still further.

Division of labor

To enable efficient updates on a wide variety of devices while still maintaining performance, the Prime Video app has two parts: a high-performance engine written in C++ that is stored on-device and an easy-to-update component that is downloaded every time the app launches.

Original architecture.jpeg
The original architecture of the Prime Video app, with a layer of C++ code stored on-device and layers of JavaScript code downloaded at run time.

In the figure above, the stuff on device is a thin C++ layer that includes a JavaScript virtual machine (VM) and the components required to run the Prime Video application, which handle input, the media pipeline, and such processes as such as network access, image decoding, and window events handling.

Related content
In a pilot study, an automated code checker found about 100 possible errors, 80% of which turned out to require correction.

The stuff we download (at run time) includes the application code, along with low-level components that handle scene management, the animation system, graphics rendering, layout, and resource management, among other things. Historically, these components all used JavaScript

This architecture split allows us to deliver new features and bug fixes without having to go through the very slow process of updating the C++ layer. The downloadable code is delivered through a fully automated continuous integration and delivery pipeline that can release updates as often as every few hours. However, we have a constant tension between writing code that’s performant (C++) and writing less-performant code that we can update with ease (JavaScript).

WebAssembly

Wasm provides a compilation target for programming languages that offer more expressivity than JavaScript does, such as C or Rust. Like JavaScript code, compiled Wasm binaries run on a VM that provides a uniform interface between code and hardware, regardless of device.

Wasm was initially intended for web browsers, but there are now standalone applications of Wasm VMs outside the browser, such as running Internet-of-things software, game mods, and server-side workloads.

Our Wasm investigations started in August 2020, when we built some prototypes to compare the performance of Wasm VMs and JavaScript VMs in simulations involving the type of work our low-level JavaScript components were doing. In those experiments, code written in Rust and compiled to Wasm was 10 to 25 times as fast as JavaScript.

Related content
Two papers at WACV propose neural models for enhancing video-streaming experiences.

We can’t just rewrite the Prime Video application in Rust and run it on a Wasm VM, however, as it still needs to run on legacy devices and browsers that don’t have Wasm support. We also don’t want to create a new app only for the new architecture, as we value deploying the same application across environments.

This is why we moved only the low-level systems from JavaScript to Wasm. In this way, we still bring performance benefits to the application, without the application teams’ having to know or care that we run certain systems on a Wasm VM.

This is what our new architecture looks like:

Architecture with Wasm.jpeg
The new architecture, with WebAssembly.

The Wasm binaries are deployed with the JavaScript code, through the same fully automated pipeline that can take a program from code commit to running on customers’ devices in a few hours.

The switch

The figure above shows the new architecture with a Wasm VM and a JavaScript VM running in separate threads. But how did we transition from the first architecture to the second one without rewriting the app?

The first step is updating the stuff on device to include the Wasm VM, so it can now run both versions of a given software component (JavaScript only or JavaScript and Wasm). This allows us to gradually release the Wasm components to a subset of customers.

We had to modify how the Prime Video application communicates with these components. At a high level, the application works by creating a scene — a representation of a visual scene — which consists of nodes whose implementations are device specific. A host node (e.g., view, image, text) is a data structure that has all the necessary information to update and render a component of the visual scene.

Related content
Meet Amazon Science’s newest research area.

At startup, we check if we’re running on a device that has Wasm available. If it does, we create lightweight host nodes in JavaScript that don’t do anything other than send commands to the Wasm VM. The “real” host nodes are created in Wasm when these commands are handled.

We use messages to communicate between the two VMs because we don’t want the JavaScript VM work to interrupt the Wasm VM work. The job of the Wasm components is to update nodes and pump frames out to the screen as fast as possible without any interruptions.

The hard part was doing this switch in a way that preserves the behavior of the JavaScript systems. We sometimes had to duplicate the “incorrect” behavior of the JavaScript renderer in the new Wasm version, because the app relied on it for some edge cases. Making sure the JavaScript VM code never calls any dangerous function on the wrong thread has also added extra difficulties.

Results 

As I mentioned, the switch to Rust and Wasm has improved the applications’ frame rate stability and speed. To reach our goal of reliable 60-frame-per-second frame generation and improve input latency, we will move more systems to Wasm, such as focus management and layout.

The total memory consumption for the Wasm VM, including the module instance, environment, and the module itself is at most 7.5 megabytes. By moving these systems to Wasm, we have saved a total of 30 megabytes of JavaScript heap memory. Memory is a scarce resource on most of the devices we deploy on, so this is a welcome reduction.

The binary size of our Wasm module is 150 kilobytes when compressed (750 kilobytes uncompressed, after symbol stripping). The module’s small size, coupled with the fast VM start time, means that the addition of Wasm doesn’t affect the app start-up time.

Using Rust has enabled programmers of all experience levels to contribute code without requiring reviewers to carefully scrutinize every line for safety pitfalls. We trust the compiler, and we can focus our code reviews on functionality, not language corner cases.

Another benefit of using Rust is having access to an ecosystem of high-quality libraries. For instance, we built an application that overlays debugger information on an application scene render using egui, a Rust GUI library. Integrating egui with our Wasm renderer took a couple of hours of work and offers us an easy way to gain insights into the engine’s internals.

Debug overlay.png
An image generated by the renderer, with debugging information overlaid.

Overall, we think that this investment in Rust and WebAssembly has paid off: after a year and 37,000 lines of Rust code, we have significantly improved performance, stability, and CPU consumption and reduced memory utilization.

Research areas

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques