This picture is an overhead shot inside an Amazon center, workers can be seen moving amidst hundreds of boxes which sit on conveyor belts and carts, in the upper left foreground, a yellow railing extends into the distance.
When faced with the need to evolve Amazon’s supply chain to meet customer needs, a team of scientists, developers, and other professionals worked together to create an inventory planning system that would help Amazon fulfill its delivery promises.
F4D Studios

The evolution of Amazon’s inventory planning system

How Amazon’s scientists developed a first-of-its-kind multi-echelon system for inventory buying and placement.

For every order placed on the Amazon Store, mathematical models developed by Amazon’s Supply Chain Optimization Technologies organization (SCOT) work behind the scenes to ensure that product inventories are best positioned to fulfill the order. 

Forecasting models developed by SCOT predict the demand for every product. Buying systems determine the right level of product to purchase from different suppliers, while large-scale placement systems determine the optimal location for products across the hundreds of facilities belonging to Amazon’s global fulfillment network.

“With hundreds of millions of products sold across multiple geographies, developing automated models to make inventory planning decisions at Amazon scale is one of the most challenging and rewarding parts of our work,” said Deepak Bhatia, vice president of Supply Chain Optimization Technologies at Amazon.

We made the decision to redesign Amazon’s supply chain systems from the ground up.
Deepak Bhatia

In the first half of the past decade, Amazon transitioned from a largely manual supply chain management system to an automated one. However, when faced with the need to evolve Amazon’s supply chain to meet customer needs, and the introduction of same day delivery services like Prime Now, the team moved to replace that system with a new one that would better help Amazon fulfill delivery promises made to customers.

“As far back as 2016, we were able to see that the automated system we had at the time wouldn’t help us meet the ever-growing expectations of our customers,” Bhatia recalled. “As a result, we made the decision to redesign Amazon’s supply chain systems from the ground up.”

A global company catering to local needs

“In 2016, Amazon’s supply chain network was designed for scenarios where inventory from any fulfillment center could be shipped to any customer to meet a two-day promise,” said Salal Humair, senior principal research scientist at Amazon who has been with the company for seven years.

This design was inadequate for the new world in which Amazon was operating; one shaped by what Humair calls the “globalization-localization imperative.” Amazon’s expansion included an increasing number of international locations — at the time, the company had 175 fulfillment centers serving customers in 185 countries around the world.

“Meeting the needs of our customer base meant that we needed to serve those customers in multiple geographies,” Humair said.

As Amazon continued to expand internationally, the company also launched one-day and same day delivery windows in local regions for services like Amazon Prime and Amazon Prime Now.

“We quickly realized that in addition to serving customers around the globe, we also had to pivot from functioning as a national network to a local one, where we could position inventory close to our customers,” Humair says.

A row of five profile photos shows, left to right, Deepak Bhatia, vice president of Supply Chain Optimization Technologies at Amazon; Salal Humair, senior principal research scientist; Alp Muharremoglu, a senior principal scientist; Jeff Maurer, a vice president; and Yan Xia, principal applied scientist.
Left to right, Deepak Bhatia, vice president of Supply Chain Optimization Technologies at Amazon; Salal Humair, senior principal research scientist; Alp Muharremoglu, a senior principal scientist; Jeff Maurer, a vice president in SCOT; and Yan Xia, principal applied scientist, were among those instrumental in migrating Amazon to the multi-echelon system.

In addition to the ‘globalization-localization imperative,’ the growing complexity of Amazon’s supply chain network further complicated matters. To meet the increased customer demand for a diverse variety of shipping speeds, Amazon’s fulfillment network was expanding to include an increasing number of building types and sizes: from fulfillment centers (for everyday products) and non-sortable fulfillment centers (for larger items), to smaller fulfillment centers catering to same-day orders, and distribution centers that supplied products to downstream fulfillment centers. The network was increasingly becoming layered, and fulfillment centers in one layer (or echelon) were acting as suppliers to other layers.

“We had to reimagine every aspect of our system to account for this increasing number of echelons,” Humair said.

The science behind multi-echelon inventory planning

The sheer scale of Amazons operations posed a significant challenge from a scientific perspective. Amazon Store orders are fulfilled through complex dynamic optimization processes — where a real-time order assignment system can choose to fulfill an order from the optimal fulfillment center that can meet the customer promise. This real-time order assignment makes inventory planning an incredibly complex problem to solve.

Other inventory-related dependencies further complicate matters: the same pool of inventory is frequently used to serve demand for orders with different shipping speeds. Consider a box of diapers: it can be used to fulfill an order for a two-day Prime delivery. It can also be used to ease the life of harried parents who have placed an order on Prime Now, and need diapers for their baby delivered in a two-hour window.

Amazon’s scientists also have to contend with a high degree of uncertainty. Customer demand for products cannot be perfectly predicted even with the most advanced machine learning models. In addition, lead times from vendors are subject to natural variation due to manufacturing capacity, transportation times, weather, etc., adding another layer of uncertainty.

This required building a custom solution, one that relies on sound scientific principles and rigor, and borrowing ideas from academic literature as building blocks, but with ground-breaking in-house invention.
Alp Muharremoglu

Humair notes that the scale of Amazon’s operations, the complexity of the network, and the uncertainties associated with the company’s dynamic ordering system make it impossible to even write down a closed-form objective function for the optimization problem the team was trying to solve.

While multi-echelon inventory optimization is a well-researched field, the bulk of literature focused on single-product models, proposed solutions for much simpler networks, or used greatly simplified assumptions for replenishing inventory.

“There is a large body of academic literature on multi-echelon inventory management, and papers typically focus on one or two main aspects of the problem,” noted Alp Muharremoglu, a senior principal scientist in SCOT who spent 15 years as a faculty member at Columbia University and the University of Texas at Dallas. “Amazon’s scale and complexity meant no existing solution was a perfect fit. This required building a custom solution, one that relies on sound scientific principles and rigor, and borrowing ideas from academic literature as building blocks, but with ground-breaking in-house invention to push the boundaries of academic research. It is a thrill to see multi-echelon inventory theory truly in action in such a large scale and dynamic supply chain.”

As a result, the system developed by SCOT (a project whose roots stretch back to 2016) is a significant break from the past. The heart of the model is a multi-product, multi-fulfillment center, capacity-constrained model for optimizing inventory levels for multiple delivery speeds, under a dynamic fulfillment policy. The framework then uses a Lagrangian-type decomposition framework to control and optimize inventory levels across Amazon’s network in near real-time.

Broadly speaking, decomposition is a mathematical technique that breaks a large, complex problem up into smaller and simpler ones. Each of these problems is then solved in parallel or sequentially. The Lagrangian method of decomposition factors complicated constraints into the solution, while providing a ‘cost’ for violating these constraints. This cost makes the problem easier to solve by providing an upper bound to the maximization problem, which is critical when planning for inventory levels at Amazon’s scale. 

“We computed opportunity costs for storage and flows at every fulfillment center,” Humair said. “Using Lagrangean decomposition, we then used these costs to calculate the related inventory positions at these locations. Crucially, we incorporated a stochastic dynamic fulfillment policy in a scalable optimization model, allowing Amazon to calculate inventory levels not at just one location, but at every layer in our fulfillment network.”

Mobilizing the organization

While creating the new multi-echelon system was an imposing scientific challenge, it also represented a significant organizational accomplishment, one that required collaboration across multiple teams.

“Moving multi-echelon from concept to implementation was one of the most difficult organizational challenges we’ve worked through; we had many potential implementations that looked radically different in terms of model capabilities, interfaces, engineering challenges, and long-term implications for how our teams would interact with each other,” said Jeff Maurer, a SCOT vice president who has been instrumental in rolling out the automation of Amazon’s supply chain and oversaw the roll out of the multi-echelon system.

“This was also a case where there wasn’t a great way to decide between them without building and exploring one or more approaches in production. Ultimately, that’s what we did — we picked the best options we could identify, built them out, learned from them, then repeated that process. We learned things by experimenting with real production implementations that we could never have learned from simplified models or simulations alone, given the complexity of the real-world dynamics of our supply chain. But it was hard on the teams — it wasn’t always obvious that the systems the teams were iterating on were the best path, given the high directional ambiguity.”

Packages moving through a fulfillment center

“Sometimes, the only way to make a massive change is to realize that you have no option but to make that change,” said Yan Xia, principal applied scientist at Amazon. Humair noted that Xia played “a pivotal role” over the four years it took the company to migrate to the new multi-echelon system.

Xia recalled that teams within SCOT were keenly aware of the limitations of the existing system.  However, there was skepticism that the multi-echelon system was the right solution.

“The skepticism was understandable,” Xia said. “It’s one thing to have a big idea. But you also have to be able to present the benefits of your idea in a coherent way.”

Xia gave an example of how he helped convince members from the buying and placement teams about the benefits of the new model.

“One team decides optimal suppliers to source products from, while another team makes decisions on where these products should be placed,” Xia explained. “I was able to show them how the two functions would essentially be unified in the multi-echelon system. Sure, it would change how they worked on a day-to-day basis — but it would do so in a way that made their lives simpler.”

To help ensure that resources were made available for the development of the multi-echelon system, Xia also focused on driving alignment among leaders in SCOT. He developed a simulation based on real-world data. The results clearly demonstrated that the proposed solution for inventory forecasting, buying, and placement would result in a steep decline in shipping costs, which in turn would allow Amazon to keep prices lower for customers.

Teams involved in multi-echelon planning discussions were galvanized after seeing the results of the simulation.

“Everyone bought into the vision,” Xia said. “We began to collaborate in near real-time. If we ran into a problem, we didn’t wait around for a weekly sprint meeting. We just got together in a room, or stood next to a whiteboard and solved it.”

Xia said that this was also when things began to get more complex. 

“An awareness of the complexity of the existing setup began to dawn on us,” says Xia. “We began to realize how every component in the system had multiple dependencies. For example, the buying platforms were tightly integrated with older legacy systems – we now had to factor these dependencies into our solutions.”

Solving a multi-item, multi-echelon with stochastic demand and lead-time and aggregated capacity constraints and differentiated customer service levels. That sort of thing is just unheard of in the academia and the industry.
Deepak Bhatia

The team iterated on the multi-echelon solution in a sequence of three in-production experiments (or labs) that spanned 2018 to 2020. The first lab incorporated components of the new system coupled with the old platform. It was a resounding success in terms of reducing costs, even while fulfilling orders associated with higher shipping speeds. The team moved on to testing the subsequent version of the multi-echelon system in the second lab. 

“That wasn’t nearly as good,” Xia recalled. “Most things didn’t work as expected.”

However, the team was encouraged by leadership to keep going. This wasn’t SCOT’s first attempt at taking on big and ambitious projects. The organization had taken three years to deploy the first automated supply chain management system where they overcame various challenges.

“Sure, the failure of the second lab was demotivating,” Xia says. “But we knew from experience that this failure was only to be expected. It was part of the process.”

The team fixed the bugs, and moved on to testing new features in the third lab. These included critical system capabilities, such the ability to model order cut-off times for deliveries within a particular time window.

The system went live in 2020, and over the past year, the multi-echelon system has had a large and statistically significant impact in positioning products closer to customers.

“On a personal level, I am incredibly proud of our team. Having worked in the area of multi-echelon inventory optimization before I joined Amazon, I have a deep appreciation of how difficult it was,” Bhatia noted. “There is a strong sense of pride for the work the team is doing — such as solving a multi-item, multi-echelon with stochastic demand and lead-time and aggregated capacity constraints and differentiated customer service levels. That sort of thing is just unheard of in academia and industry. This is why I find it gratifying to work as a scientist and a leader at Amazon. It gives me a lot of pride, and none of this could have been achieved without the people and the culture we have.”

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
IN, TS, Hyderabad
Job summaryAre you excited about driving business growth for millions of sellers by applying Machine Learning? Do you thrive in a fast-moving, large-scale environment that values data-driven decision making and sound scientific practices? We are looking for experienced data scientists to build sophisticated decision making systems that help Amazon Marketplace Sellers to grow their businesses.Amazon Marketplace enables sellers to reach hundreds of millions of customers and provides sellers the tools and services needed to make e-commerce simple, efficient and successful. Our team builds the core intelligence, insights, and algorithms that power a range of products used by millions of sellers. We are tackling large-scale, challenging problems such as helping sellers to prioritise business tasks by bringing together petabytes of data from sources across Amazon.You will be proficient with creating value out of data by formulating questions, analysing vast amounts of data, and communicating insights effectively to audience of varied backgrounds. In addition, you'll contribute to online experiments, build machine learning pipelines and personalised data products.To know more about Amazon science, Please visit https://www.amazon.scienceKey job responsibilities· Collaborate with domain experts, formulate questions, gather, process and analyse petabytes of data to unearth reliable insights· Design & execute experiments and analyze experimental results· Communicate insights effectively to audience of a wide range of backgrounds· Formulate relevant prediction problems and solve them by developing machine learning models· Partner with data engineering teams to improve quality of data assets, metrics and insights· Leverage industry best practices to establish repeatable science practices, principles & processes
US, CA, Santa Clara
Job summaryJob summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, WA, Seattle
Job summaryWorkforce Staffing (WFS) brings together the workforce powering Amazon’s ability to delight customers: the Amazon Associate. With over 1M hires, WFS supports sourcing, hiring, and developing the best talent to work in our fulfillment centers, sortation centers, delivery stations, shopping sites, Prime Air locations, and more.WFS' Funnel Science and Analytics team is looking for a Research Scientist. This individual will be responsible for conducting experiments and evaluating the impact of interventions when conducting experiments is not feasible. The perfect candidate will have the applied experience and the theoretical knowledge of policy evaluation and conducting field studies.Key job responsibilitiesAs a Research Scientist (RS), you will do causal inference, design studies and experiments, leverage data science workflows, build predictive models, conduct simulations, create visualizations, and influence science and analytics practice across the organization.Provide insights by analyzing historical data from databases (Redshift, SQL Server, Oracle DW, and Salesforce).Identify useful research avenues for increasing candidate conversion, test, and create well written documents to communicate to technical and non-technical audiences.About the teamFunnel Science and Analytics team finds ways to maximize the conversion and early retention of every candidate who wants to be an Amazon Associate. By focusing on our candidates, we improve candidate and business outcomes, and Amazon takes a step closer to being Earth’s Best Employer.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, VA, Arlington
Job summaryAmazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities.Sponsored Products helps merchants, retail vendors, and brand owners succeed via native advertising that grows incremental sales of their products sold through Amazon. The Sponsored Products Ad Marketplace organization optimizes the systems and ad placements to match advertiser demand with publisher supply using a combination of machine learning, big data analytics, ultra-low latency high-volume engineering systems, and quantitative product focus. Our goals are to help buyers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and to build a major, sustainable business that helps Amazon continuously innovate on behalf of all customers.We are seeking a Sr. Applied Science Manager who has a solid background in applied Machine Learning and AI, deep passion for building data-driven products, ability to communicate data insights and scientific vision, and has a proven track record of leading both applied scientists and software engineers to execute complex projects and deliver business impacts.In this team, Machine Learning and Deep Learning technologies including Semantic Retrieval, Natural Language Processing (NLP), Information Extraction, Image Understanding, Learning to Rank are used to match shoppers' search queries to ads with per impression prediction models that run in real-time with tight latency budgets. Models are trained using self-supervised techniques, transfer learning, and supervised training using labeled datasets. Knowledge distillation and model compression techniques are used to optimize model performance for production serving.The Senior Manager role will lead science and engineering efforts in these areas for Amazon Search pages WW. The person in this role is responsible for: maintaining the consistent and long term reliability for the models and the delivery services that power them, managing diverse teams across multiple domains, and collaborating cross-functional with other senior decision makers. Our critical LPs for this role are Think Big, Are Right A lot, and Earns Trust. What is key is that the leader will need a dynamic mindset to build systems that are flexible and will scale.In this role, you will:· Lead a group of both applied scientists and software engineers to deliver machine-learning and AI solutions to production.· Advance team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner.· Develop science and engineering roadmap, run Sprint/quarter and annual planning, and foster cross-team collaboration to execute complex projects.· Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management.· Hire and develop top talents, provide technical and career development guidance to both scientists and engineers in the organization.Locations: Seattle, WA; New York, NY; Arlington, VA
US, WA, Seattle
Job summaryAmazon Sub-Same-Day Supply Chain team is looking for an experienced and motivated Senior Data Scientist to generate data-driven insights influencing the long term SSD supply chain strategy, build the necessary predictive models, optimization algorithms and customer behavioral segments allowing us to discover and build the roadmap for SSD to enable operational efficiency and scale.Key job responsibilitiesWork with product managers, engineers, other scientists, and leadership to identify and prioritize complex problems.Translate business problems into specific analytical questions and form hypotheses that can be answered with available data using scientific methods or identify additional data needed in the master datasets to fill any gapsDesign, develop, and evaluate highly innovative statistics and ML modelsGuide and establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementationProactively seek to identify business opportunities and insights and provide solutions to shape key business processes and policies based on a broad and deep knowledge of Amazon data, industry best-practices, and work done by other teams.A day in the lifeIn this role, you will be a technical expert with significant scope and impact. You will work with Product Managers, Business Engineers, and other Scientists, to deeply understand SSDs current optimization strategy while benchmarking against industry best practices and standards to gain insights that will drive our roadmap. A successful Data Scientist will have extreme bias for action needed in a startup environment, with outstanding leadership skills, proven ability to build and manage medium-scale modeling projects, identify data requirements, build methodology and tools that are statistically grounded. It will be a person who enjoys diving deep into data, doing analysis, discovering root causes, and designing long-term scientific solutions. We are seeking someone who can thrive in a fast-paced, high-energy and fun work environment where we deliver value incrementally and frequently. We value highly technical people who know their subject matter deeply and are willing to learn new areas. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career.About the teamAmazon's Sub-Same Day (SSD) delivery program is designed to get customers their items as fast as possible – currently in as quickly as five hours. With ultra-fast delivery becoming increasingly important, we are looking for an experienced Senior Data Scientist to help us benchmark against industry standards to uncover insights to improve and optimize the long term supply chain strategy for Amazons Sub-Same-Day business.
US, WA, Seattle
Job summaryAmazon's Weblab team enables experimentation at massive scale to help Amazon build better products for customers. A/B testing is in Amazon's DNA and we're at the core of how Amazon innovates on behalf of customers. We are seeking a skilled Applied Scientist to help us build the future of experimentation systems at Amazon.About you:You have an entrepreneurial spirit and want to make a big impact on Amazon and its customers. You are excited about cutting-edge research on unsupervised learning, graph algorithms, and causal inference in the intersection between Machine Learning, Statistics, and Econometrics. You enjoy building massive scale and high performance systems but also have a bias for delivering simple solutions to complex problems. You're looking for a career where you'll be able to build, to deliver, and to impress. You challenge yourself and others to come up with better solutions. You develop strong working relationships and thrive in a collaborative team environment.About us together:We're going to help Amazon make better long term decisions by designing and delivering A/B-testing systems for long-term experiments, and by using these systems to figure out how near term behavior impacts long term growth and profitability. Our work will inform some of the biggest decisions at Amazon. Along the way, we're going to face seemingly insurmountable challenges. We're going to argue about how to solve them, and we'll work together to find a solution that is better than each of the proposals we came in with. We'll make tough decisions, but we'll all understand why. We'll be the dream team.We have decades of combined experience on the team in many areas science and engineering so it's a great environment in which to learn and grow. A/B testing is one of the hottest areas of research and development in the world today and this is a chance to learn how it works in the company known for pioneering its use.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles).Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.