This picture is an overhead shot inside an Amazon center, workers can be seen moving amidst hundreds of boxes which sit on conveyor belts and carts, in the upper left foreground, a yellow railing extends into the distance.
When faced with the need to evolve Amazon’s supply chain to meet customer needs, a team of scientists, developers, and other professionals worked together to create an inventory planning system that would help Amazon fulfill its delivery promises.
F4D Studios

The evolution of Amazon’s inventory planning system

How Amazon’s scientists developed a first-of-its-kind multi-echelon system for inventory buying and placement.

For every order placed on the Amazon Store, mathematical models developed by Amazon’s Supply Chain Optimization Technologies organization (SCOT) work behind the scenes to ensure that product inventories are best positioned to fulfill the order. 

Forecasting models developed by SCOT predict the demand for every product. Buying systems determine the right level of product to purchase from different suppliers, while large-scale placement systems determine the optimal location for products across the hundreds of facilities belonging to Amazon’s global fulfillment network.

“With hundreds of millions of products sold across multiple geographies, developing automated models to make inventory planning decisions at Amazon scale is one of the most challenging and rewarding parts of our work,” said Deepak Bhatia, vice president of Supply Chain Optimization Technologies at Amazon.

We made the decision to redesign Amazon’s supply chain systems from the ground up.
Deepak Bhatia

In the first half of the past decade, Amazon transitioned from a largely manual supply chain management system to an automated one. However, when faced with the need to evolve Amazon’s supply chain to meet customer needs, and the introduction of same day delivery services like Prime Now, the team moved to replace that system with a new one that would better help Amazon fulfill delivery promises made to customers.

“As far back as 2016, we were able to see that the automated system we had at the time wouldn’t help us meet the ever-growing expectations of our customers,” Bhatia recalled. “As a result, we made the decision to redesign Amazon’s supply chain systems from the ground up.”

A global company catering to local needs

“In 2016, Amazon’s supply chain network was designed for scenarios where inventory from any fulfillment center could be shipped to any customer to meet a two-day promise,” said Salal Humair, senior principal research scientist at Amazon who has been with the company for seven years.

This design was inadequate for the new world in which Amazon was operating; one shaped by what Humair calls the “globalization-localization imperative.” Amazon’s expansion included an increasing number of international locations — at the time, the company had 175 fulfillment centers serving customers in 185 countries around the world.

“Meeting the needs of our customer base meant that we needed to serve those customers in multiple geographies,” Humair said.

As Amazon continued to expand internationally, the company also launched one-day and same day delivery windows in local regions for services like Amazon Prime and Amazon Prime Now.

“We quickly realized that in addition to serving customers around the globe, we also had to pivot from functioning as a national network to a local one, where we could position inventory close to our customers,” Humair says.

A row of five profile photos shows, left to right, Deepak Bhatia, vice president of Supply Chain Optimization Technologies at Amazon; Salal Humair, senior principal research scientist; Alp Muharremoglu, a senior principal scientist; Jeff Maurer, a vice president; and Yan Xia, principal applied scientist.
Left to right, Deepak Bhatia, vice president of Supply Chain Optimization Technologies at Amazon; Salal Humair, senior principal research scientist; Alp Muharremoglu, a senior principal scientist; Jeff Maurer, a vice president in SCOT; and Yan Xia, principal applied scientist, were among those instrumental in migrating Amazon to the multi-echelon system.

In addition to the ‘globalization-localization imperative,’ the growing complexity of Amazon’s supply chain network further complicated matters. To meet the increased customer demand for a diverse variety of shipping speeds, Amazon’s fulfillment network was expanding to include an increasing number of building types and sizes: from fulfillment centers (for everyday products) and non-sortable fulfillment centers (for larger items), to smaller fulfillment centers catering to same-day orders, and distribution centers that supplied products to downstream fulfillment centers. The network was increasingly becoming layered, and fulfillment centers in one layer (or echelon) were acting as suppliers to other layers.

“We had to reimagine every aspect of our system to account for this increasing number of echelons,” Humair said.

The science behind multi-echelon inventory planning

The sheer scale of Amazons operations posed a significant challenge from a scientific perspective. Amazon Store orders are fulfilled through complex dynamic optimization processes — where a real-time order assignment system can choose to fulfill an order from the optimal fulfillment center that can meet the customer promise. This real-time order assignment makes inventory planning an incredibly complex problem to solve.

Other inventory-related dependencies further complicate matters: the same pool of inventory is frequently used to serve demand for orders with different shipping speeds. Consider a box of diapers: it can be used to fulfill an order for a two-day Prime delivery. It can also be used to ease the life of harried parents who have placed an order on Prime Now, and need diapers for their baby delivered in a two-hour window.

Amazon’s scientists also have to contend with a high degree of uncertainty. Customer demand for products cannot be perfectly predicted even with the most advanced machine learning models. In addition, lead times from vendors are subject to natural variation due to manufacturing capacity, transportation times, weather, etc., adding another layer of uncertainty.

This required building a custom solution, one that relies on sound scientific principles and rigor, and borrowing ideas from academic literature as building blocks, but with ground-breaking in-house invention.
Alp Muharremoglu

Humair notes that the scale of Amazon’s operations, the complexity of the network, and the uncertainties associated with the company’s dynamic ordering system make it impossible to even write down a closed-form objective function for the optimization problem the team was trying to solve.

While multi-echelon inventory optimization is a well-researched field, the bulk of literature focused on single-product models, proposed solutions for much simpler networks, or used greatly simplified assumptions for replenishing inventory.

“There is a large body of academic literature on multi-echelon inventory management, and papers typically focus on one or two main aspects of the problem,” noted Alp Muharremoglu, a senior principal scientist in SCOT who spent 15 years as a faculty member at Columbia University and the University of Texas at Dallas. “Amazon’s scale and complexity meant no existing solution was a perfect fit. This required building a custom solution, one that relies on sound scientific principles and rigor, and borrowing ideas from academic literature as building blocks, but with ground-breaking in-house invention to push the boundaries of academic research. It is a thrill to see multi-echelon inventory theory truly in action in such a large scale and dynamic supply chain.”

As a result, the system developed by SCOT (a project whose roots stretch back to 2016) is a significant break from the past. The heart of the model is a multi-product, multi-fulfillment center, capacity-constrained model for optimizing inventory levels for multiple delivery speeds, under a dynamic fulfillment policy. The framework then uses a Lagrangian-type decomposition framework to control and optimize inventory levels across Amazon’s network in near real-time.

Broadly speaking, decomposition is a mathematical technique that breaks a large, complex problem up into smaller and simpler ones. Each of these problems is then solved in parallel or sequentially. The Lagrangian method of decomposition factors complicated constraints into the solution, while providing a ‘cost’ for violating these constraints. This cost makes the problem easier to solve by providing an upper bound to the maximization problem, which is critical when planning for inventory levels at Amazon’s scale. 

“We computed opportunity costs for storage and flows at every fulfillment center,” Humair said. “Using Lagrangean decomposition, we then used these costs to calculate the related inventory positions at these locations. Crucially, we incorporated a stochastic dynamic fulfillment policy in a scalable optimization model, allowing Amazon to calculate inventory levels not at just one location, but at every layer in our fulfillment network.”

Mobilizing the organization

While creating the new multi-echelon system was an imposing scientific challenge, it also represented a significant organizational accomplishment, one that required collaboration across multiple teams.

“Moving multi-echelon from concept to implementation was one of the most difficult organizational challenges we’ve worked through; we had many potential implementations that looked radically different in terms of model capabilities, interfaces, engineering challenges, and long-term implications for how our teams would interact with each other,” said Jeff Maurer, a SCOT vice president who has been instrumental in rolling out the automation of Amazon’s supply chain and oversaw the roll out of the multi-echelon system.

“This was also a case where there wasn’t a great way to decide between them without building and exploring one or more approaches in production. Ultimately, that’s what we did — we picked the best options we could identify, built them out, learned from them, then repeated that process. We learned things by experimenting with real production implementations that we could never have learned from simplified models or simulations alone, given the complexity of the real-world dynamics of our supply chain. But it was hard on the teams — it wasn’t always obvious that the systems the teams were iterating on were the best path, given the high directional ambiguity.”

Packages moving through a fulfillment center

“Sometimes, the only way to make a massive change is to realize that you have no option but to make that change,” said Yan Xia, principal applied scientist at Amazon. Humair noted that Xia played “a pivotal role” over the four years it took the company to migrate to the new multi-echelon system.

Xia recalled that teams within SCOT were keenly aware of the limitations of the existing system.  However, there was skepticism that the multi-echelon system was the right solution.

“The skepticism was understandable,” Xia said. “It’s one thing to have a big idea. But you also have to be able to present the benefits of your idea in a coherent way.”

Xia gave an example of how he helped convince members from the buying and placement teams about the benefits of the new model.

“One team decides optimal suppliers to source products from, while another team makes decisions on where these products should be placed,” Xia explained. “I was able to show them how the two functions would essentially be unified in the multi-echelon system. Sure, it would change how they worked on a day-to-day basis — but it would do so in a way that made their lives simpler.”

To help ensure that resources were made available for the development of the multi-echelon system, Xia also focused on driving alignment among leaders in SCOT. He developed a simulation based on real-world data. The results clearly demonstrated that the proposed solution for inventory forecasting, buying, and placement would result in a steep decline in shipping costs, which in turn would allow Amazon to keep prices lower for customers.

Teams involved in multi-echelon planning discussions were galvanized after seeing the results of the simulation.

“Everyone bought into the vision,” Xia said. “We began to collaborate in near real-time. If we ran into a problem, we didn’t wait around for a weekly sprint meeting. We just got together in a room, or stood next to a whiteboard and solved it.”

Xia said that this was also when things began to get more complex. 

“An awareness of the complexity of the existing setup began to dawn on us,” says Xia. “We began to realize how every component in the system had multiple dependencies. For example, the buying platforms were tightly integrated with older legacy systems – we now had to factor these dependencies into our solutions.”

Solving a multi-item, multi-echelon with stochastic demand and lead-time and aggregated capacity constraints and differentiated customer service levels. That sort of thing is just unheard of in the academia and the industry.
Deepak Bhatia

The team iterated on the multi-echelon solution in a sequence of three in-production experiments (or labs) that spanned 2018 to 2020. The first lab incorporated components of the new system coupled with the old platform. It was a resounding success in terms of reducing costs, even while fulfilling orders associated with higher shipping speeds. The team moved on to testing the subsequent version of the multi-echelon system in the second lab. 

“That wasn’t nearly as good,” Xia recalled. “Most things didn’t work as expected.”

However, the team was encouraged by leadership to keep going. This wasn’t SCOT’s first attempt at taking on big and ambitious projects. The organization had taken three years to deploy the first automated supply chain management system where they overcame various challenges.

“Sure, the failure of the second lab was demotivating,” Xia says. “But we knew from experience that this failure was only to be expected. It was part of the process.”

The team fixed the bugs, and moved on to testing new features in the third lab. These included critical system capabilities, such the ability to model order cut-off times for deliveries within a particular time window.

The system went live in 2020, and over the past year, the multi-echelon system has had a large and statistically significant impact in positioning products closer to customers.

“On a personal level, I am incredibly proud of our team. Having worked in the area of multi-echelon inventory optimization before I joined Amazon, I have a deep appreciation of how difficult it was,” Bhatia noted. “There is a strong sense of pride for the work the team is doing — such as solving a multi-item, multi-echelon with stochastic demand and lead-time and aggregated capacity constraints and differentiated customer service levels. That sort of thing is just unheard of in academia and industry. This is why I find it gratifying to work as a scientist and a leader at Amazon. It gives me a lot of pride, and none of this could have been achieved without the people and the culture we have.”

Related content

US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve large-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air Team! We are seeking a highly skilled weather scientist to help invent and develop new models and strategies to support Prime Air’s drone delivery program. In this role, you will develop, build, and implement novel weather solutions using your expertise in atmospheric science, data science, and software development. You will be supported by a team of world class software engineers, systems engineers, and other scientists. Your work will drive cross-functional decision-making through your excellent oral and written communication skills, define system architecture and requirements, enable the scaling of Prime Air’s operation, and produce innovative technological breakthroughs that unlock opportunities to meet our customers' evolving demands. About the team Prime air has ambitious goals to offer its service to an increasing number of customers. Enabling a lot of concurrent flights over many different locations is central to reaching more customers. To this end, the weather team is building algorithms, tools and services for the safe and efficient operation of prime air's autonomous drone fleet.
US, CA, Santa Clara
Amazon Q Business is an AI assistant powered by generative technology. It provides capabilities such as answering queries, summarizing information, generating content, and executing tasks based on enterprise data. We are seeking a Language Data Scientist II to join our data team. Our mission is to engineer high-quality datasets that are essential to the success of Amazon Q Business. From human evaluations and Responsible AI safeguards to Retrieval-Augmented Generation and beyond, our work ensures that Generative AI is enterprise-ready, safe, and effective for users. As part of our diverse team—including language engineers, linguists, data scientists, data engineers, and program managers—you will collaborate closely with science, engineering, and product teams. We are driven by customer obsession and a commitment to excellence. In this role, you will leverage data-centric AI principles to assess the impact of data on model performance and the broader machine learning pipeline. You will apply Generative AI techniques to evaluate how well our data represents human language and conduct experiments to measure downstream interactions. Key job responsibilities * oversee end-to-end evaluation data pipeline and propose evaluation metrics and methods * incorporate your knowledge of linguistic fundamentals, NLU, NLP to the data pipeline * process and analyze diverse media formats including audio recordings, video, images and text * perform statistical analysis of the data * write intuitive data generation & annotation guidelines * write advanced and nuanced prompts to optimize LLM outputs * write python scripts for data wrangling * automate repetitive workflows and improve existing processes * perform background research and vet available public datasets on topics such as long text retrieval, text generation, summarization, question-answering, and reasoning * leverage and integrate AWS services to optimize data collection workflows * collaborate with scientists, engineers, and product managers in defining data quality metrics and guidelines. * lead dive deep sessions with data annotators About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, CA, Palo Alto
Amazon Sponsored Products is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of GenAI/LLM powered self-service performance advertising products that drive discovery and sales. Our products are strategically important to Amazon’s Selling Partners and key to driving their long-term growth. We deliver billions of ad impressions and clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving team with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. This role will be pivotal within the Autonomous Campaigns org of Sponsored Products Ads, where we're pioneering the development of AI-powered advertising innovations that will redefine the future of campaign management and optimization. As a Principal Applied Scientist, you will lead the charge in creating the next generation of self-operating, GenAI-driven advertising systems that will set a new standard for the industry. Our team is at the forefront of designing and implementing these transformative technologies, which will leverage advanced Large Language Models (LLMs) and sophisticated chain-of-thought reasoning to achieve true advertising autonomy. Your work will bring to life systems capable of deeply understanding the nuanced context of each product, market trends, and consumer behavior, making intelligent, real-time decisions that surpass human capabilities. By harnessing the power of these future-state GenAI systems, we will develop advertising solutions capable of autonomously selecting optimal keywords, dynamically adjusting bids based on complex market conditions, and optimizing product targeting across various Amazon platforms. Crucially, these systems will continuously analyze performance metrics and implement strategic pivots, all without requiring manual intervention from advertisers, allowing them to focus on their core business while our AI works tirelessly on their behalf. This is not simply about automating existing processes; your work will redefine what's possible in advertising. Our GenAI systems will employ multi-step reasoning, considering a vast array of factors, from seasonality and competitive landscape to macroeconomic trends, to make decisions that far exceed human speed and effectiveness. This autonomous, context-aware approach represents a paradigm shift in how advertising campaigns are conceived, executed, and optimized. As a Principal Applied Scientist, you will be at the forefront of this transformation, tackling complex challenges in natural language processing, reinforcement learning, and causal inference. Your pioneering efforts will directly shape the future of e-commerce advertising, with the potential to influence marketplace dynamics on a global scale. This is an unparalleled opportunity to push the boundaries of what's achievable in AI-driven advertising and leave an indelible mark on the industry. Key job responsibilities • Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business using GenAI, LLM, and ML solutions. • Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in AI/ML. • Design and lead organization-wide AI/ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our advertisers. • Work with our engineering partners and draw upon your experience to meet latency and other system constraints. • Identify untapped, high-risk technical and scientific directions, and devise new research directions that you will drive to completion and deliver. • Be responsible for communicating our Generative AI/ Traditional AI/ML innovations to the broader internal & external scientific community.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As a Data Scientist on this team you will: - Lead Data Science solutions from beginning to end. - Deliver with independence on challenging large-scale problems with complexity and ambiguity. - Write code (Python, R, Scala, SQL, etc.) to obtain, manipulate, and analyze data. - Build Machine Learning and statistical models to solve specific business problems. - Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance. - Analyze historical data to identify trends and support optimal decision making. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose effective solutions for the business problems you define. - Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE