This picture is an overhead shot inside an Amazon center, workers can be seen moving amidst hundreds of boxes which sit on conveyor belts and carts, in the upper left foreground, a yellow railing extends into the distance.
When faced with the need to evolve Amazon’s supply chain to meet customer needs, a team of scientists, developers, and other professionals worked together to create an inventory planning system that would help Amazon fulfill its delivery promises.
F4D Studios

The evolution of Amazon’s inventory planning system

How Amazon’s scientists developed a first-of-its-kind multi-echelon system for inventory buying and placement.

For every order placed on the Amazon Store, mathematical models developed by Amazon’s Supply Chain Optimization Technologies organization (SCOT) work behind the scenes to ensure that product inventories are best positioned to fulfill the order. 

Forecasting models developed by SCOT predict the demand for every product. Buying systems determine the right level of product to purchase from different suppliers, while large-scale placement systems determine the optimal location for products across the hundreds of facilities belonging to Amazon’s global fulfillment network.

“With hundreds of millions of products sold across multiple geographies, developing automated models to make inventory planning decisions at Amazon scale is one of the most challenging and rewarding parts of our work,” said Deepak Bhatia, vice president of Supply Chain Optimization Technologies at Amazon.

We made the decision to redesign Amazon’s supply chain systems from the ground up.
Deepak Bhatia

In the first half of the past decade, Amazon transitioned from a largely manual supply chain management system to an automated one. However, when faced with the need to evolve Amazon’s supply chain to meet customer needs, and the introduction of same day delivery services like Prime Now, the team moved to replace that system with a new one that would better help Amazon fulfill delivery promises made to customers.

“As far back as 2016, we were able to see that the automated system we had at the time wouldn’t help us meet the ever-growing expectations of our customers,” Bhatia recalled. “As a result, we made the decision to redesign Amazon’s supply chain systems from the ground up.”

A global company catering to local needs

“In 2016, Amazon’s supply chain network was designed for scenarios where inventory from any fulfillment center could be shipped to any customer to meet a two-day promise,” said Salal Humair, senior principal research scientist at Amazon who has been with the company for seven years.

This design was inadequate for the new world in which Amazon was operating; one shaped by what Humair calls the “globalization-localization imperative.” Amazon’s expansion included an increasing number of international locations — at the time, the company had 175 fulfillment centers serving customers in 185 countries around the world.

“Meeting the needs of our customer base meant that we needed to serve those customers in multiple geographies,” Humair said.

As Amazon continued to expand internationally, the company also launched one-day and same day delivery windows in local regions for services like Amazon Prime and Amazon Prime Now.

“We quickly realized that in addition to serving customers around the globe, we also had to pivot from functioning as a national network to a local one, where we could position inventory close to our customers,” Humair says.

A row of five profile photos shows, left to right, Deepak Bhatia, vice president of Supply Chain Optimization Technologies at Amazon; Salal Humair, senior principal research scientist; Alp Muharremoglu, a senior principal scientist; Jeff Maurer, a vice president; and Yan Xia, principal applied scientist.
Left to right, Deepak Bhatia, vice president of Supply Chain Optimization Technologies at Amazon; Salal Humair, senior principal research scientist; Alp Muharremoglu, a senior principal scientist; Jeff Maurer, a vice president in SCOT; and Yan Xia, principal applied scientist, were among those instrumental in migrating Amazon to the multi-echelon system.

In addition to the ‘globalization-localization imperative,’ the growing complexity of Amazon’s supply chain network further complicated matters. To meet the increased customer demand for a diverse variety of shipping speeds, Amazon’s fulfillment network was expanding to include an increasing number of building types and sizes: from fulfillment centers (for everyday products) and non-sortable fulfillment centers (for larger items), to smaller fulfillment centers catering to same-day orders, and distribution centers that supplied products to downstream fulfillment centers. The network was increasingly becoming layered, and fulfillment centers in one layer (or echelon) were acting as suppliers to other layers.

“We had to reimagine every aspect of our system to account for this increasing number of echelons,” Humair said.

The science behind multi-echelon inventory planning

The sheer scale of Amazons operations posed a significant challenge from a scientific perspective. Amazon Store orders are fulfilled through complex dynamic optimization processes — where a real-time order assignment system can choose to fulfill an order from the optimal fulfillment center that can meet the customer promise. This real-time order assignment makes inventory planning an incredibly complex problem to solve.

Other inventory-related dependencies further complicate matters: the same pool of inventory is frequently used to serve demand for orders with different shipping speeds. Consider a box of diapers: it can be used to fulfill an order for a two-day Prime delivery. It can also be used to ease the life of harried parents who have placed an order on Prime Now, and need diapers for their baby delivered in a two-hour window.

Amazon’s scientists also have to contend with a high degree of uncertainty. Customer demand for products cannot be perfectly predicted even with the most advanced machine learning models. In addition, lead times from vendors are subject to natural variation due to manufacturing capacity, transportation times, weather, etc., adding another layer of uncertainty.

This required building a custom solution, one that relies on sound scientific principles and rigor, and borrowing ideas from academic literature as building blocks, but with ground-breaking in-house invention.
Alp Muharremoglu

Humair notes that the scale of Amazon’s operations, the complexity of the network, and the uncertainties associated with the company’s dynamic ordering system make it impossible to even write down a closed-form objective function for the optimization problem the team was trying to solve.

While multi-echelon inventory optimization is a well-researched field, the bulk of literature focused on single-product models, proposed solutions for much simpler networks, or used greatly simplified assumptions for replenishing inventory.

“There is a large body of academic literature on multi-echelon inventory management, and papers typically focus on one or two main aspects of the problem,” noted Alp Muharremoglu, a senior principal scientist in SCOT who spent 15 years as a faculty member at Columbia University and the University of Texas at Dallas. “Amazon’s scale and complexity meant no existing solution was a perfect fit. This required building a custom solution, one that relies on sound scientific principles and rigor, and borrowing ideas from academic literature as building blocks, but with ground-breaking in-house invention to push the boundaries of academic research. It is a thrill to see multi-echelon inventory theory truly in action in such a large scale and dynamic supply chain.”

As a result, the system developed by SCOT (a project whose roots stretch back to 2016) is a significant break from the past. The heart of the model is a multi-product, multi-fulfillment center, capacity-constrained model for optimizing inventory levels for multiple delivery speeds, under a dynamic fulfillment policy. The framework then uses a Lagrangian-type decomposition framework to control and optimize inventory levels across Amazon’s network in near real-time.

Broadly speaking, decomposition is a mathematical technique that breaks a large, complex problem up into smaller and simpler ones. Each of these problems is then solved in parallel or sequentially. The Lagrangian method of decomposition factors complicated constraints into the solution, while providing a ‘cost’ for violating these constraints. This cost makes the problem easier to solve by providing an upper bound to the maximization problem, which is critical when planning for inventory levels at Amazon’s scale. 

“We computed opportunity costs for storage and flows at every fulfillment center,” Humair said. “Using Lagrangean decomposition, we then used these costs to calculate the related inventory positions at these locations. Crucially, we incorporated a stochastic dynamic fulfillment policy in a scalable optimization model, allowing Amazon to calculate inventory levels not at just one location, but at every layer in our fulfillment network.”

Mobilizing the organization

While creating the new multi-echelon system was an imposing scientific challenge, it also represented a significant organizational accomplishment, one that required collaboration across multiple teams.

“Moving multi-echelon from concept to implementation was one of the most difficult organizational challenges we’ve worked through; we had many potential implementations that looked radically different in terms of model capabilities, interfaces, engineering challenges, and long-term implications for how our teams would interact with each other,” said Jeff Maurer, a SCOT vice president who has been instrumental in rolling out the automation of Amazon’s supply chain and oversaw the roll out of the multi-echelon system.

“This was also a case where there wasn’t a great way to decide between them without building and exploring one or more approaches in production. Ultimately, that’s what we did — we picked the best options we could identify, built them out, learned from them, then repeated that process. We learned things by experimenting with real production implementations that we could never have learned from simplified models or simulations alone, given the complexity of the real-world dynamics of our supply chain. But it was hard on the teams — it wasn’t always obvious that the systems the teams were iterating on were the best path, given the high directional ambiguity.”

Packages moving through a fulfillment center

“Sometimes, the only way to make a massive change is to realize that you have no option but to make that change,” said Yan Xia, principal applied scientist at Amazon. Humair noted that Xia played “a pivotal role” over the four years it took the company to migrate to the new multi-echelon system.

Xia recalled that teams within SCOT were keenly aware of the limitations of the existing system.  However, there was skepticism that the multi-echelon system was the right solution.

“The skepticism was understandable,” Xia said. “It’s one thing to have a big idea. But you also have to be able to present the benefits of your idea in a coherent way.”

Xia gave an example of how he helped convince members from the buying and placement teams about the benefits of the new model.

“One team decides optimal suppliers to source products from, while another team makes decisions on where these products should be placed,” Xia explained. “I was able to show them how the two functions would essentially be unified in the multi-echelon system. Sure, it would change how they worked on a day-to-day basis — but it would do so in a way that made their lives simpler.”

To help ensure that resources were made available for the development of the multi-echelon system, Xia also focused on driving alignment among leaders in SCOT. He developed a simulation based on real-world data. The results clearly demonstrated that the proposed solution for inventory forecasting, buying, and placement would result in a steep decline in shipping costs, which in turn would allow Amazon to keep prices lower for customers.

Teams involved in multi-echelon planning discussions were galvanized after seeing the results of the simulation.

“Everyone bought into the vision,” Xia said. “We began to collaborate in near real-time. If we ran into a problem, we didn’t wait around for a weekly sprint meeting. We just got together in a room, or stood next to a whiteboard and solved it.”

Xia said that this was also when things began to get more complex. 

“An awareness of the complexity of the existing setup began to dawn on us,” says Xia. “We began to realize how every component in the system had multiple dependencies. For example, the buying platforms were tightly integrated with older legacy systems – we now had to factor these dependencies into our solutions.”

Solving a multi-item, multi-echelon with stochastic demand and lead-time and aggregated capacity constraints and differentiated customer service levels. That sort of thing is just unheard of in the academia and the industry.
Deepak Bhatia

The team iterated on the multi-echelon solution in a sequence of three in-production experiments (or labs) that spanned 2018 to 2020. The first lab incorporated components of the new system coupled with the old platform. It was a resounding success in terms of reducing costs, even while fulfilling orders associated with higher shipping speeds. The team moved on to testing the subsequent version of the multi-echelon system in the second lab. 

“That wasn’t nearly as good,” Xia recalled. “Most things didn’t work as expected.”

However, the team was encouraged by leadership to keep going. This wasn’t SCOT’s first attempt at taking on big and ambitious projects. The organization had taken three years to deploy the first automated supply chain management system where they overcame various challenges.

“Sure, the failure of the second lab was demotivating,” Xia says. “But we knew from experience that this failure was only to be expected. It was part of the process.”

The team fixed the bugs, and moved on to testing new features in the third lab. These included critical system capabilities, such the ability to model order cut-off times for deliveries within a particular time window.

The system went live in 2020, and over the past year, the multi-echelon system has had a large and statistically significant impact in positioning products closer to customers.

“On a personal level, I am incredibly proud of our team. Having worked in the area of multi-echelon inventory optimization before I joined Amazon, I have a deep appreciation of how difficult it was,” Bhatia noted. “There is a strong sense of pride for the work the team is doing — such as solving a multi-item, multi-echelon with stochastic demand and lead-time and aggregated capacity constraints and differentiated customer service levels. That sort of thing is just unheard of in academia and industry. This is why I find it gratifying to work as a scientist and a leader at Amazon. It gives me a lot of pride, and none of this could have been achieved without the people and the culture we have.”

Related content

IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Bellevue
Who are we? Do you want to build Amazon's next $100B business? We're not just joining the shipping industry—we're transforming how billions of packages move across the world every year. Through evolving Amazon's controlled, predictable fulfillment network into a dynamic, adaptive shipping powerhouse we are building an intelligent system that optimizes in real-time to deliver on the promises businesses make to their customers. Our mission goes beyond moving boxes—we're spinning a flywheel where every new package makes our network stronger, faster, and more efficient. As we increase density and scale, we're revolutionizing shipping for businesses while simultaneously strengthening Amazon's own delivery capabilities, driving down costs and increasing speed for our entire ecosystem. What will you do? Amazon shipping is seeking a Senior Data Scientist with strong pricing and machine learning skills to work in an embedded team, partnering closely with commercial, product and tech. This person will be responsible for developing demand prediction models for Amazon shipping’s spot pricing system. As a Senior Data Scientist, you will be part of a science team responsible for improving price discovery across Amazon shipping, measuring the impact of model implementation, and defining a roadmap for improvements and expansion of the models into new unique use cases. This person will be collaborating closely with business and software teams to research, innovate, and solve high impact economics problems facing the worldwide Amazon shipping business. Who are you? The ideal candidate is analytical, resourceful, curious and team oriented, with clear communication skills and the ability to build strong relationships with key stakeholders. You should be a strong owner, are right a lot, and have a proven track record of taking on end-to-end ownership of and successfully delivering complex projects in a fast-paced and dynamic business environment. As this position involves regular interaction with senior leadership (director+), you need to be comfortable communicating at that level while also working directly with various functional teams. Key job responsibilities * Combine ML methodologies with fundamental economics principles to create new pricing algorithms. * Automate price exploration through automated experimentation methodologies, for example using multi-armed bandit strategies. * Partner with other scientists to dynamically predict prices to maximize capacity utilization. * Collaborate with product managers, data scientists, and software developers to incorporate models into production processes and influence senior leaders. * Educate non-technical business leaders on complex modeling concepts, and explain modeling results, implications, and performance in an accessible manner. * Independently identify and pursue new opportunities to leverage economic insights * Opportunity to expand into other domains such as causal analytics, optimization and simulation. About the team Amazon Shipping's pricing team empowers our global business to find strategic harmony between growth and profit tradeoffs, while seeking long term customer value and financial viability. Our people and systems help identify and drive synergy between demand, operational, and economic planning. The breadth of our problems range from CEO-level strategic support to in-depth mathematical experimentation and optimization. Excited by the intersection of data and large scale strategic decision-making? This is the team for you!
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, CA, San Francisco
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLE Employer: AMAZON.COM SERVICES LLC Offered Position: Data Scientist III Job Location: Seattle, Washington Job Number: AMZ9674365 Position Responsibilities: Own the data science elements of various products to help with data-based decision making, product performance optimization, and product performance tracking. Work directly with product managers to help drive the design of the product. Work with Technical Product Managers to help drive the build planning. Translate business problems and products into data requirements and metrics. Initiate the design, development, and implementation of scientific analysis projects or deliverables. Own the analysis, modelling, system design, and development of data science solutions for products. Write documents and make presentations that explain model/analysis results to the business. Bridge the degree of uncertainty in both problem definition and data scientific solution approaches. Build consensus on data, metrics, and analysis to drive business and system strategy. Position Requirements: Master's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science or a related field and two years of experience in the job offered or a related occupation. Employer will accept a Bachelor's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science, or a related field and five years of progressive post-baccalaureate experience in the job offered or a related occupation as equivalent to the Master's degree and two years of experience. Must have one year of experience in the following skills: (1) building statistical models and machine learning models using large datasets from multiple resources; (2) building complex data analyses by leveraging scripting languages including Python, Java, or related scripting language; and (3) communicating with users, technical teams, and management to collect requirements, evaluate alternatives, and develop processes and tools to support the organization. Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation. 40 hours / week, 8:00am-5:00pm, Salary Range $162,752/year to $215,300/year. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, visit: https://www.aboutamazon.com/workplace/employee-benefits.#0000
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, CA, Sunnyvale
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to help build industry-leading technology with multimodal language models for various edge applications. This role is for a Sr. Applied Scientist to lead science efforts for on-device inference pipelines and orchestration, working closely with cross-functional product and engineering teams to invent, design, develop, and validate new AI features for our devices. Key job responsibilities * Lead cross-functional efforts to invent, design, develop, and validate new AI features for our devices * Invent, build, and evaluate model inference and orchestrations to enable new customer experiences * Drive partnerships with product and engineering teams to implement algorithms and models in production * Train and optimize state-of-the-art multimodal models for resource-efficient deployment * Work closely with compiler engineers, hardware architects, data collection, and product teams A day in the life As an Applied Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to science solution design, conduct experiments, explore new algorithms, develop embedded inference pipelines, and discover ways to enrich our customer experiences. You'll have opportunities to collaborate across teams of engineers and scientists to bring algorithms and models to production. About the team Our Devices team specializes in inventing new-to-world, category creating products using advanced machine learning technologies. This role is on a new cross-functional team, whose cadence and structure resembles an efficient and fast-paced startup, with rapid growth and development opportunities.
US, NY, New York
Principal Applied Scientists in AWS Science of Security are dedicated to making AWS the best computing service in the world for customers who require advanced and rigorous solutions for security, privacy, and sovereignty. Key job responsibilities The successful candidate will: *Solve large or significantly complex problems that require deep knowledge and understanding of your domain and scientific innovation. *Own strategic problem solving, and take the lead on the design, implementation, and delivery for solutions that have a long-term quantifiable impact. *Povide cross-organizational technical influence, increasing productivity and effectiveness by sharing your deep knowledge and experience. * Develop strategic plans to identify fundamentally new solutions for business problems. * Assist in the career development of others, actively mentoring individuals and the community on advanced technical issues. A day in the life This is a unique and rare opportunity to get in early on a fast-growing segment of AWS and help shape the technology, product and the business. You will have a chance to utilize your deep technical experience within a fast moving, start-up environment and make a large business and customer impact.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models.  As a Principal Scientist, you will lead the research and development of complex sensing systems that help our robots perceive the world around them. You will explore and guide the exploration of novel sensing modalities, refining the existing ones, and imagine the future of robot–based perception, safety, and navigation. You will formulate a robust sensing architecture, lead the experimentation and prototyping, and take part in creating future robots that are fully aware of their surroundings. Key job responsibilities - Build and lead teams focused on hardware, firmware, and embedded systems - Drive technical roadmaps for next-generation robotics platforms - Drive architecture decisions for complex robotics perception systems - Bring the latest trends and scientific developments in robotic perception to the technical team - Create technical standards for robotics sensing platforms - Drive innovation in real-time perception and control systems
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Lead end-to-end thermal design for SoC and consumer electronics, spanning package, board, system architecture, and product integration - Perform advanced CFD simulations using tools such as Star-CCM+ or FloEFD to assess feasibility, risks, and mitigation strategies - Plan and execute thermal validation for devices and SoC packages, ensuring compliance with safety, reliability, and qualification requirements - Partner with cross-functional and cross-site teams to influence product decisions, define thermal limits, and establish temperature thresholds - Develop data processing, statistical analysis, and test automation frameworks to improve insight quality, scalability, and engineering efficiency - Communicate thermal risks, trade-offs, and mitigation strategies clearly to engineering leadership to support schedule, performance, and product decisions About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?