This picture is an overhead shot inside an Amazon center, workers can be seen moving amidst hundreds of boxes which sit on conveyor belts and carts, in the upper left foreground, a yellow railing extends into the distance.
When faced with the need to evolve Amazon’s supply chain to meet customer needs, a team of scientists, developers, and other professionals worked together to create an inventory planning system that would help Amazon fulfill its delivery promises.
F4D Studios

The evolution of Amazon’s inventory planning system

How Amazon’s scientists developed a first-of-its-kind multi-echelon system for inventory buying and placement.

For every order placed on the Amazon Store, mathematical models developed by Amazon’s Supply Chain Optimization Technologies organization (SCOT) work behind the scenes to ensure that product inventories are best positioned to fulfill the order. 

Forecasting models developed by SCOT predict the demand for every product. Buying systems determine the right level of product to purchase from different suppliers, while large-scale placement systems determine the optimal location for products across the hundreds of facilities belonging to Amazon’s global fulfillment network.

“With hundreds of millions of products sold across multiple geographies, developing automated models to make inventory planning decisions at Amazon scale is one of the most challenging and rewarding parts of our work,” said Deepak Bhatia, vice president of Supply Chain Optimization Technologies at Amazon.

We made the decision to redesign Amazon’s supply chain systems from the ground up.
Deepak Bhatia

In the first half of the past decade, Amazon transitioned from a largely manual supply chain management system to an automated one. However, when faced with the need to evolve Amazon’s supply chain to meet customer needs, and the introduction of same day delivery services like Prime Now, the team moved to replace that system with a new one that would better help Amazon fulfill delivery promises made to customers.

“As far back as 2016, we were able to see that the automated system we had at the time wouldn’t help us meet the ever-growing expectations of our customers,” Bhatia recalled. “As a result, we made the decision to redesign Amazon’s supply chain systems from the ground up.”

A global company catering to local needs

“In 2016, Amazon’s supply chain network was designed for scenarios where inventory from any fulfillment center could be shipped to any customer to meet a two-day promise,” said Salal Humair, senior principal research scientist at Amazon who has been with the company for seven years.

This design was inadequate for the new world in which Amazon was operating; one shaped by what Humair calls the “globalization-localization imperative.” Amazon’s expansion included an increasing number of international locations — at the time, the company had 175 fulfillment centers serving customers in 185 countries around the world.

“Meeting the needs of our customer base meant that we needed to serve those customers in multiple geographies,” Humair said.

As Amazon continued to expand internationally, the company also launched one-day and same day delivery windows in local regions for services like Amazon Prime and Amazon Prime Now.

“We quickly realized that in addition to serving customers around the globe, we also had to pivot from functioning as a national network to a local one, where we could position inventory close to our customers,” Humair says.

A row of five profile photos shows, left to right, Deepak Bhatia, vice president of Supply Chain Optimization Technologies at Amazon; Salal Humair, senior principal research scientist; Alp Muharremoglu, a senior principal scientist; Jeff Maurer, a vice president; and Yan Xia, principal applied scientist.
Left to right, Deepak Bhatia, vice president of Supply Chain Optimization Technologies at Amazon; Salal Humair, senior principal research scientist; Alp Muharremoglu, a senior principal scientist; Jeff Maurer, a vice president in SCOT; and Yan Xia, principal applied scientist, were among those instrumental in migrating Amazon to the multi-echelon system.

In addition to the ‘globalization-localization imperative,’ the growing complexity of Amazon’s supply chain network further complicated matters. To meet the increased customer demand for a diverse variety of shipping speeds, Amazon’s fulfillment network was expanding to include an increasing number of building types and sizes: from fulfillment centers (for everyday products) and non-sortable fulfillment centers (for larger items), to smaller fulfillment centers catering to same-day orders, and distribution centers that supplied products to downstream fulfillment centers. The network was increasingly becoming layered, and fulfillment centers in one layer (or echelon) were acting as suppliers to other layers.

“We had to reimagine every aspect of our system to account for this increasing number of echelons,” Humair said.

The science behind multi-echelon inventory planning

The sheer scale of Amazons operations posed a significant challenge from a scientific perspective. Amazon Store orders are fulfilled through complex dynamic optimization processes — where a real-time order assignment system can choose to fulfill an order from the optimal fulfillment center that can meet the customer promise. This real-time order assignment makes inventory planning an incredibly complex problem to solve.

Other inventory-related dependencies further complicate matters: the same pool of inventory is frequently used to serve demand for orders with different shipping speeds. Consider a box of diapers: it can be used to fulfill an order for a two-day Prime delivery. It can also be used to ease the life of harried parents who have placed an order on Prime Now, and need diapers for their baby delivered in a two-hour window.

Amazon’s scientists also have to contend with a high degree of uncertainty. Customer demand for products cannot be perfectly predicted even with the most advanced machine learning models. In addition, lead times from vendors are subject to natural variation due to manufacturing capacity, transportation times, weather, etc., adding another layer of uncertainty.

This required building a custom solution, one that relies on sound scientific principles and rigor, and borrowing ideas from academic literature as building blocks, but with ground-breaking in-house invention.
Alp Muharremoglu

Humair notes that the scale of Amazon’s operations, the complexity of the network, and the uncertainties associated with the company’s dynamic ordering system make it impossible to even write down a closed-form objective function for the optimization problem the team was trying to solve.

While multi-echelon inventory optimization is a well-researched field, the bulk of literature focused on single-product models, proposed solutions for much simpler networks, or used greatly simplified assumptions for replenishing inventory.

“There is a large body of academic literature on multi-echelon inventory management, and papers typically focus on one or two main aspects of the problem,” noted Alp Muharremoglu, a senior principal scientist in SCOT who spent 15 years as a faculty member at Columbia University and the University of Texas at Dallas. “Amazon’s scale and complexity meant no existing solution was a perfect fit. This required building a custom solution, one that relies on sound scientific principles and rigor, and borrowing ideas from academic literature as building blocks, but with ground-breaking in-house invention to push the boundaries of academic research. It is a thrill to see multi-echelon inventory theory truly in action in such a large scale and dynamic supply chain.”

As a result, the system developed by SCOT (a project whose roots stretch back to 2016) is a significant break from the past. The heart of the model is a multi-product, multi-fulfillment center, capacity-constrained model for optimizing inventory levels for multiple delivery speeds, under a dynamic fulfillment policy. The framework then uses a Lagrangian-type decomposition framework to control and optimize inventory levels across Amazon’s network in near real-time.

Broadly speaking, decomposition is a mathematical technique that breaks a large, complex problem up into smaller and simpler ones. Each of these problems is then solved in parallel or sequentially. The Lagrangian method of decomposition factors complicated constraints into the solution, while providing a ‘cost’ for violating these constraints. This cost makes the problem easier to solve by providing an upper bound to the maximization problem, which is critical when planning for inventory levels at Amazon’s scale. 

“We computed opportunity costs for storage and flows at every fulfillment center,” Humair said. “Using Lagrangean decomposition, we then used these costs to calculate the related inventory positions at these locations. Crucially, we incorporated a stochastic dynamic fulfillment policy in a scalable optimization model, allowing Amazon to calculate inventory levels not at just one location, but at every layer in our fulfillment network.”

Mobilizing the organization

While creating the new multi-echelon system was an imposing scientific challenge, it also represented a significant organizational accomplishment, one that required collaboration across multiple teams.

“Moving multi-echelon from concept to implementation was one of the most difficult organizational challenges we’ve worked through; we had many potential implementations that looked radically different in terms of model capabilities, interfaces, engineering challenges, and long-term implications for how our teams would interact with each other,” said Jeff Maurer, a SCOT vice president who has been instrumental in rolling out the automation of Amazon’s supply chain and oversaw the roll out of the multi-echelon system.

“This was also a case where there wasn’t a great way to decide between them without building and exploring one or more approaches in production. Ultimately, that’s what we did — we picked the best options we could identify, built them out, learned from them, then repeated that process. We learned things by experimenting with real production implementations that we could never have learned from simplified models or simulations alone, given the complexity of the real-world dynamics of our supply chain. But it was hard on the teams — it wasn’t always obvious that the systems the teams were iterating on were the best path, given the high directional ambiguity.”

Packages moving through a fulfillment center

“Sometimes, the only way to make a massive change is to realize that you have no option but to make that change,” said Yan Xia, principal applied scientist at Amazon. Humair noted that Xia played “a pivotal role” over the four years it took the company to migrate to the new multi-echelon system.

Xia recalled that teams within SCOT were keenly aware of the limitations of the existing system.  However, there was skepticism that the multi-echelon system was the right solution.

“The skepticism was understandable,” Xia said. “It’s one thing to have a big idea. But you also have to be able to present the benefits of your idea in a coherent way.”

Xia gave an example of how he helped convince members from the buying and placement teams about the benefits of the new model.

“One team decides optimal suppliers to source products from, while another team makes decisions on where these products should be placed,” Xia explained. “I was able to show them how the two functions would essentially be unified in the multi-echelon system. Sure, it would change how they worked on a day-to-day basis — but it would do so in a way that made their lives simpler.”

To help ensure that resources were made available for the development of the multi-echelon system, Xia also focused on driving alignment among leaders in SCOT. He developed a simulation based on real-world data. The results clearly demonstrated that the proposed solution for inventory forecasting, buying, and placement would result in a steep decline in shipping costs, which in turn would allow Amazon to keep prices lower for customers.

Teams involved in multi-echelon planning discussions were galvanized after seeing the results of the simulation.

“Everyone bought into the vision,” Xia said. “We began to collaborate in near real-time. If we ran into a problem, we didn’t wait around for a weekly sprint meeting. We just got together in a room, or stood next to a whiteboard and solved it.”

Xia said that this was also when things began to get more complex. 

“An awareness of the complexity of the existing setup began to dawn on us,” says Xia. “We began to realize how every component in the system had multiple dependencies. For example, the buying platforms were tightly integrated with older legacy systems – we now had to factor these dependencies into our solutions.”

Solving a multi-item, multi-echelon with stochastic demand and lead-time and aggregated capacity constraints and differentiated customer service levels. That sort of thing is just unheard of in the academia and the industry.
Deepak Bhatia

The team iterated on the multi-echelon solution in a sequence of three in-production experiments (or labs) that spanned 2018 to 2020. The first lab incorporated components of the new system coupled with the old platform. It was a resounding success in terms of reducing costs, even while fulfilling orders associated with higher shipping speeds. The team moved on to testing the subsequent version of the multi-echelon system in the second lab. 

“That wasn’t nearly as good,” Xia recalled. “Most things didn’t work as expected.”

However, the team was encouraged by leadership to keep going. This wasn’t SCOT’s first attempt at taking on big and ambitious projects. The organization had taken three years to deploy the first automated supply chain management system where they overcame various challenges.

“Sure, the failure of the second lab was demotivating,” Xia says. “But we knew from experience that this failure was only to be expected. It was part of the process.”

The team fixed the bugs, and moved on to testing new features in the third lab. These included critical system capabilities, such the ability to model order cut-off times for deliveries within a particular time window.

The system went live in 2020, and over the past year, the multi-echelon system has had a large and statistically significant impact in positioning products closer to customers.

“On a personal level, I am incredibly proud of our team. Having worked in the area of multi-echelon inventory optimization before I joined Amazon, I have a deep appreciation of how difficult it was,” Bhatia noted. “There is a strong sense of pride for the work the team is doing — such as solving a multi-item, multi-echelon with stochastic demand and lead-time and aggregated capacity constraints and differentiated customer service levels. That sort of thing is just unheard of in academia and industry. This is why I find it gratifying to work as a scientist and a leader at Amazon. It gives me a lot of pride, and none of this could have been achieved without the people and the culture we have.”

Related content

US, VA, Arlington
The Global Real Estate and Facilities (GREF) team provides real estate transaction expertise, business partnering, space & occupancy planning, design and construction, capital investment program management and facility maintenance and operations for Amazon’s corporate office portfolio across multiple countries. We partner with suppliers to ensure quality, innovation and operational excellence with Amazon’s business and utilize customer driven feedback to continuously improve and exceed employee expectations. Within GREF, the newly formed Global Transformation & Insights (GTI) team is responsible for Customer Insights, Business Insights, Creative, and Communications. We are a group of builders, creators, innovators and go getters. We are customer obsessed, and index high on Ownership. We Think Big, and move fast, and constantly challenge one another while collaborating on "what else", "how might we", and "how can I help". We celebrate the unique perspectives we each bring to the table. We thrive in ambiguity. The ideal Senior Data Scientist candidate thrives in ambiguous environments where the business problem is known, though the technical strategy is not defined. They are able to investigate and develop strategies and concepts to frame a solution set and enable detailed design to commence. They must have strong problem-solving capabilities to isolate, define, resolve complex problems, and implement effective and efficient solutions. They should have experience working in large scale organizations – where data sets are large and complex. They should have high judgement with the ability to balance the right data fidelity with right speed with right confidence level for various stages of analysis and purposes. They should have experience partnering with a broad set of functional teams and levels with the ability to adjust and synthesize their approaches, assumptions, and recommendations to audiences with varying levels of technical knowledge. They are mentors and strong partners with research scientists and other data scientists. Key job responsibilities - Demonstrate advanced technical expertise in data science - Provide scientific and technical leadership within the team - Stay current with emerging technologies and methodologies - Apply data science techniques to solve business problems - Guide and mentor junior data scientists - Share knowledge about scientific advancements with team members - Contribute to the technical growth of the organization - Work on complex, high-impact projects - Influence data science strategy and direction - Collaborate across teams to drive data-driven decision making
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research and implementation that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Implement and optimize control algorithms for robot locomotion - Support development of behaviors that enable robots to traverse diverse terrain - Contribute to methods that integrate stability, locomotion, and manipulation tasks - Help create dynamics models and simulations that enable sim2real transfer of algorithms - Collaborate effectively with multi-disciplinary teams on hardware and algorithms for loco-manipulation
US, WA, Bellevue
Amazon’s Middle Mile Planning Research and Optimization Science group (mmPROS) is looking for a Senior Research Scientist specializing in design and evaluation of algorithms for predictive modeling and optimization applied to large-scale transportation planning systems. This includes the development of novel machine learning and causal modeling techniques to improve on marketplace optimization solutions. Middle Mile Air and Ground transportation represents one of the fastest growing logistics areas within Amazon. Amazon Fulfillment Services transports millions of packages via air and ground and continues to grow year over year. The scale of this operation challenges Amazon to design, build and operate robust transportation networks that minimize the overall operational cost while meeting all customer deadlines. The Middle Mile Planning Research and Optimization Science group is charged with developing an evolving suite of decision support and optimization tools to facilitate the design of efficient air and ground transport networks, optimize the flow of packages within the network to efficiently align network capacity and shipment demand, set prices, and effectively utilize scarce resources, such as aircraft and trucks. Time horizons for these tools vary from years and months for long-term planning to hours and minutes for near-term operational decision making and disruption recovery. These tools rely heavily on mathematical optimization, stochastic simulation, meta-heuristic and machine learning techniques. In addition, Amazon often finds existing techniques do not effectively match our unique business needs which necessitates the innovation and development of new approaches and algorithms to find an adequate solution. As an Applied Scientist responsible for middle mile transportation, you will be working closely with different teams including business leaders and engineers to design and build scalable products operating across multiple transportation modes. You will create experiments and prototype implementations of new learning algorithms and prediction techniques. You will have exposure to top level leadership to present findings of your research. You will also work closely with other scientists and also engineers to implement your models within our production system. You will implement solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility, and make decisions that affect the way we build and integrate algorithms across our product portfolio.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation with single and dual arm manipulation - Leverage simulation and real-world data collection to create large datasets for model development - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for dexterous manipulation
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement whole body control methods for balance, locomotion, and dexterous manipulation - Utilize state-of-the-art in methods in learned and model-based control - Create robust and safe behaviors for different terrains and tasks - Implement real-time controllers with stability guarantees - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for loco-manipulation - Mentor junior engineer and scientists
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities - Build, adapt and evaluate ML models for life sciences applications - Collaborate with a cross-functional team of ML scientists, biologists, software engineers and product managers
TW, TPE, Hsinchu City
Are you passionate about robotics and research? Do you want to solve real customer problems through innovative technology? Do you enjoy working on scalable research and projects in a collaborative team environment? Do you want to see your science solutions directly impact millions of customers worldwide? At Amazon, we hire the best minds in technology to innovate and build on behalf of our customers. Customer obsession is part of our company DNA, which has made us one of the world's most beloved brands. We’re looking for current PhD or Master students with a passion for robotic research and applications to join us as Robotics Applied Scientist II Intern/Co-ops in 2026 to shape the future of robotics and automation at an unprecedented scale across. For these positions, our Robotics teams at Amazon are looking for students with a specialization in one or more of the research areas in robotics such as: robotics, robotics manipulation (e.g., robot arm, grasping, dexterous manipulation, end of arm tools/end effector), autonomous mobile robots, mobile manipulation, movement, autonomous navigation, locomotion, motion/path planning, controls, perception, sensing, robot learning, artificial intelligence, machine learning, computer vision, large language models, human-robot interaction, robotics simulation, optimization, and more! We're looking for curious minds who think big and want to define tomorrow's technology. At Amazon, you'll grow into the high-impact engineer you know you can be, supported by a culture of learning and mentorship. Every day brings exciting new challenges and opportunities for personal growth. By applying to this role, you will be considered for Robotics Applied Scientist II Intern/Co-op (2026) opportunities across various Robotics teams at Amazon with different robotics research focus, with internship positions available for multiple locations, durations (3 to 6+ months), and year-round start dates (winter, spring, summer, fall). Amazon intern and co-op roles follow the same internship structure. "Intern/Internship" wording refers to both interns and co-ops. Amazon internships across all seasons are full-time positions during vacation, and interns should expect to work in office, Monday-Friday, up to 40 hours per week typically between 9am-6pm. Specific team norms around working hours will be communicated by your manager. Interns should not have other employment during the Amazon work-day. Applicants should have a minimum of one quarter/semester/trimester remaining in their studies after their internship concludes. The robotics internship join dates, length, location, and prospective team will be finalized at the time of any applicable job offers. In your application, you will be able to provide your preference of research interests, start dates, internship duration, and location. While your preference will be taken into consideration, we cannot guarantee that we can meet your selection based on several factors including but not limited to the internship availability and business needs of this role.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities As an Applied Science, you will have access to large datasets with billions of images and video to build large-scale machine learning systems. Additionally, you will analyze and model terabytes of text, images, and other types of data to solve real-world problems and translate business and functional requirements into quick prototypes or proofs of concept. We are looking for smart scientists capable of using a variety of domain expertise combined with machine learning and statistical techniques to invent, design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. About the team Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Prime Air is seeking an experienced Applied Science Manager to help develop our advanced Navigation algorithms and flight software applications. In this role, you will lead a team of scientists and engineers to conduct analyses, support cross-functional decision-making, define system architectures and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. This person must be comfortable working with a team of top-notch software developers and collaborating with our science teams. We’re looking for someone who innovates, and loves solving hard problems. You will work hard, have fun, and make history! Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.