Graphic shows the names of seven different forecasting models employed by Amazon for its forecasting algorithm, plus a timeline showing the years 2007, 2009, 20011, 2013, 2015, 2017 and 2020
Amazon’s forecasting team has drawn on advances in deep learning, image recognition, and natural language processing to develop a forecasting model that makes accurate decisions across diverse product categories. That journey took more than a decade.

The history of Amazon’s forecasting algorithm

The story of a decade-plus long journey toward a unified forecasting model.

When a customer visits Amazon, there is an almost inherent expectation that the item they are searching for will be in stock. And that expectation is understandable — Amazon sells more than 400 million products in over 185 countries.

However, the sheer volume of products makes it cost-prohibitive to maintain surplus inventory levels for every product.

Related content
The SCOT science team used lessons from the past — and improved existing tools — to contend with “a peak that lasted two years”.

Historical patterns can be leveraged to make decisions on inventory levels for products with predictable consumption patterns — think household staples like laundry detergent or trash bags. However, most products exhibit a variability in demand due to factors that are beyond Amazon’s control.

Take the example of a book like Michelle Obama’s ‘Becoming’, or the recent proliferation of sweatsuits, which emerged as both comfortable and fashion-forward clothing option during 2020. It’s difficult to account for the steep spike in sales caused by a publicity tour featuring Oprah Winfrey, and nearly impossible to foresee the effect COVID-19 would have on, among other things, stay-at-home clothing trends.

Clockwise from top left, Ping Xu, forecasting science director; Kari Torkkola, senior principal research scientist; Dhruv Madeka, principal applied scientist; and Ruofeng Wen, senior applied scientist were among those who worked on an effort to unify Amazon's forecasting model.
Clockwise from top left, Ping Xu, forecasting science director; Kari Torkkola, senior principal research scientist; Dhruv Madeka, principal applied scientist; and Ruofeng Wen, senior applied scientist, were among those who worked to unify Amazon's forecasting model.
Glynis Condon

Today, Amazon’s forecasting team has drawn on advances in fields like deep learning, image recognition and natural language processing to develop a forecasting model that makes accurate decisions across diverse product categories. Arriving at this unified forecasting model hasn’t been the result of one “eureka” moment. Rather, it has been a decade-plus long journey.

Related content
Ping Xu, forecasting science director within Amazon’s Supply Chain Optimization Technologies (SCOT) organization, talks about the importance of using science to forecast the future.

“When we started the forecasting team at Amazon, we had ten people and no scientists,” says Ping Xu, forecasting science director within Amazon’s Supply Chain Optimization Technologies (SCOT) organization. “Today, we have close to 200 people on our team. The focus on scientific and technological innovation has been key in allowing us to draw an accurate estimate of the immense variability in future demand, and make sure that customers are able to fulfill their shopping needs on Amazon.”

In the beginning: A patchwork of models

Kari Torkkola, senior principal research scientist, has played a key role in driving the evolution of Amazon’s forecasting systems in his 12 years at the company.

“When I joined Amazon, the company relied on traditional time series models for forecasting,” says Torkkola.

Time series forecasting is a statistical technique that uses historical values and associated patterns to predict future activity. In 2008, Amazon’s forecasting system used standard textbook time series forecasting methods to make predictions.

There were multiple components, all of which needed our attention. The system was incredibly hard to maintain. It gradually became clear that we needed to work towards developing a unified forecasting model.
Kari Torkkola

The system produced accurate forecasts in scenarios where the time series was predictable and stationary. However, it was unable to produce accurate forecasts for situations such as new products that had no prior history or products with highly seasonal sale patterns. Amazon’s forecasting teams had to develop new methods to account for each of these scenarios.

So they set about developing an add-on component to model seasonal patterns in products such as winter jackets. Another specialized component solved for the effects of price elasticity, where products see spikes in demand due to price drops, while yet another component called Distribution Engine modeled past errors to produce estimates of forecast distributions on top of point forecasts.

“There were multiple components, all of which needed our attention,” says Torkkola. “The system was incredibly hard to maintain. It gradually became clear that we needed to work towards developing a unified forecasting model.”

Enter the random forest

If the number of components made maintaining the forecasting system laborious, routing special forecasting cases or even product groups to specialized models, which involved encoding expert knowledge — complicated matters even further.

Then Torkkola had a deceptively simple insight as he began working toward a unified forecasting model. “There are products across multiple categories that behave the same way,” he said.

For example, there is clear delineation between new products and products with an established history. The forecast for a new video game or laptop can be generated, in part, from how similar products behaved when they had launched in the past.

The history of Amazon’s forecasting algorithm
This animation shows the models employed over the years by Supply Chain Optimization Technologies scientists as they continually refined their process, eventually arriving at the unified model they use today.

Torkkola extracted a set of features from information such as demand, sales, product category, and page views. He used these features to train a random forest model. Random forests are commonly used machine learning algorithms that comprise  a number of decision trees. The outputs of the decision trees are then bundled together to provide a more stable and accurate prediction.

“By pooling everything together in one model, we gained statistical strength across multiple categories,” Torkkola says.

At the time, Amazon’s base forecasting system produced point forecasts to predict future demand — a single number that conveys information about the future demand. However, full forecast distributions or a set of quantiles of the distribution are necessary when it comes to make informed forecasting decisions on inventory levels. The Distribution Engine, which was another add-on to the base system, was producing poorly calibrated distributions.

Torkkola wrote an initial implementation of the random forest approach to output quantiles of forecast distributions. This was rewritten as a new incarnation called Sparse Quantile Random Forest (SQRF). That implementation allowed a single forecasting system to make forecasts for different product lines where each may have had different features present, thus each of those features seem very “sparse”. SQRF could also scale to millions of products, and represented a step change for Amazon to produce forecasts at scale.

However, the system suffered from a serious drawback. It still required the team to manually engineer features for the model – in other words, the system needed humans to define the input variables that would provide the best possible output.

That was all set to change in 2013, when the field of deep learning went into overdrive.

Deep learning produces the unified model

“In 2013, there was a lot of excitement in the machine learning community around deep learning,” Torkkola says. “There were significant advances in the field of image recognition. In addition, tensor frameworks such as THEANO developed by the University of Montreal were allowing developers to build deep learning models on the fly. Currently popular frameworks such as TensorFlow were not yet available.”

Neural networks held a tantalizing prospect for Amazon’s forecasting team. In theory, neural networks could do away with the need to manually engineer features. The network could ingest raw data and learn the most relevant implicit features needed to produce a forecast without human input.

With the help of interns hired over the summers of 2014 and 2015, Torkkola experimented with both feed forward and recurrent neural networks (RNNs). In feed forward networks, the connections between nodes do not form a cycle; the opposite is true with RNNs. The team began by developing a RNN to produce a point forecast. Over the next summer, another intern developed a model to produce a distribution forecast. However, these early iterations did not outperform SQRF, the existing production system.

Amazon’s forecasting team went back to the drawing board and had another insight, one that would prove crucial in the journey towards developing a unified forecasting model.

“We trained the network on minimizing quantile loss over multiple forecast horizons,” Torkkola says. Quantile loss is among the most important metrics used in forecasting systems. It is appropriate when under- and over-prediction errors have different costs, such as in inventory buying.

“When you train a system on the same metric that you are interested in evaluating, the system performs better,” Torkkola says. The new feed forward network delivered a significant improvement in forecasting relative to SQRF.

This was the breakthrough that the team had been working towards: the team could finally start retiring the plethora of old models and utilize a unified forecasting model that would produce accurate forecasts for multiple scenarios, forecasts, and categories. The result was a 15-fold improvement in forecast accuracy and great simplification of the entire system.

At last, no feature engineering!

While the feed forward network had delivered an impressive improvement in performance, the system still continued using the same hand engineered features SQRF had used. "There was no way to tell how far those features were from optimal," Ruofeng Wen, senior applied scientist who formerly worked as a forecasting scientist and joined the project in 2016, pointed out. “Some were redundant, and some were useless.”

The team set out to develop a model that would remove the need to manually engineer domain-specific features, thus being applicable to any general Forecasting problem. The breakthrough approach, known as MQ-RNN/CNN, was published in a 2018 paper titled "A Multi-Horizon Quantile Recurrent Forecaster". It built off the recent advances made in recurrent networks (RNN) and convolutional networks (CNNs).

CNNs are frequently used in image recognition due to their ability to scan an image, determine the saliency of various parts of that image, and make decisions about the relative importance of those facets. RNNs are usually used in a different domain, parsing semantics and sentiments from texts. Crucially, both RNNs/CNNs are able to extract the most relevant features without manual engineering. “Afterall, forecasting is based on past sequential patterns,” Wen said, “and RNNs/CNNs are pretty good at capturing them.”

Leveraging the new general approach allowed Amazon to forecast the demand of any fast-moving products by a single model structure. This out-performed a dozen of legacy systems designed for difference product lines, since the model was smart enough to learn business-specific demand patterns all by itself. However, for a system to make accurate predictions about the future, it has to have a detailed understanding of the errors it has made in the past. However, the architecture of Multi-Horizon Quantile Recurrent Forecaster had few mechanisms that would enable the model to ingest knowledge about past errors.

Amazon’s forecasting team worked through this limitation by turning to the latest advances in natural language processing (NLP).

Leaning on natural language processing

Dhruv Madeka, a principal applied scientist who had conducted innovative work in developing election forecasting systems at Bloomberg, was among the scientists who had joined Amazon’s forecasting team in 2017.

“Sentences are a sequence of words,” Madeka says. “The attention mechanisms in many NLP models look at a sequence of words, and determine which other parts of the sentence are important for a given context and task. By incorporating these context-aware mechanisms, we now had a way to make our forecasting system pay attention to its history, and gain an understanding of the errors it had made in the past.”

Amazon’s forecasting team honed in on the transformer architectures that were shaking up the world of NLP. Their new approach, which used decoder-encoder attention mechanisms for context-alignment, was outlined in the paper "MQTransformer: Multi-Horizon Forecasts with Context Dependent and Feedback-Aware Attention" published in December 2020. The decoder-encoder attention mechanisms meant that the system could study its own history and improve forecasting accuracy and decrease the volatility of the forecast.

With MQ Transformer, Amazon now has a unified forecasting model able to make even more accurate predictions across the company’s vast catalog of products.

Today, the team is developing deep reinforcement learning models that will enable Amazon to ensure that the accuracy improvements in forecasts translate directly into cost savings, resulting in lower costs for customers. To design a system that optimizes directly for savings — as opposed to inventory levels — the forecasting team is drawing on cutting-edge research from fields such as deep reinforcement learning.

“Amazon is an exceptional place for a scientist because of the focus on innovation grounded on making a real impact,” says Xu. “Thinking big is more than having a bold vision. It involves planting seeds, growing it continuously by failing fast, and doubling down on scaling once the evidence of success becomes apparent.”

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
US, WA, Seattle
Job summaryWe are seeking a talented Economist to join our team and help us build innovative systems at the intersection of machine learning and quantitative marketing. We develop new measurement and optimization tools that enable Amazon to make smart marketing investment decisions. This role will impact billions of dollars of decision-making by Amazon’s most strategic businesses. Our most effective tools are released to external advertisers too, defining new industry standards. What makes us unique is our comprehensive data, our world-class engineering systems and a high concentration of some of the most talented scientists and engineers in industry. As a successful candidate, you will be passionate about building scalable systems. You'll be comfortable with ambiguity and have exceptional technical acumen. You'll be up to speed on the latest research, and capable of developing new techniques at the intersection of causal inference, reinforcement learning and quantitative marketing. You will lead other scientists by example, with crisp technical writing and frequent presentations.Key job responsibilitiesBuild end-to-end causal machine learning solutions.Perform hands-on analysis and modeling with enormous data sets to better understand how advertising influences shopper behavior.Run A/B experiments that affect millions of customers to evaluate the impact of your solutions.Spearhead new research agendas and own delivering on commitments.Work closely with engineering to design systems that facilitate high velocity science exploration and quick prototype-to-prod timelines.Develop novel methods at the intersection of causal inference, machine learning and quantitative marketing.Present original research at internal and external conferences.About the teamOur team is a dynamic mix of scientists who are passionate about innovating. We are excited to evaluate our novel causal models and optimization algorithms against ground truth generated by large-scale experiments. We think big, take risks and stay grounded.
IN, KA, Bangalore
Job summaryDo you want to be part of a new team at Amazon that is making history? Do you want to build technology and new science that millions of people will use? Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)?We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales.We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Bangalore (India). We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.Do not hesitate to reach out if you have some of the following: ability to apply state of the art in large scale Machine Learning (e.g. semi-weakly-un-supervised deep learning, natural language understanding), curiosity to learn through controlled experimentation or experience with low latency production systems. Apply now or ping Shailendra Agarwal (https://www.linkedin.com/in/shailendra-agarwal-893a3b11/) to learn more about the different ways you can have huge impact with us.We are an inclusive employer and value diversity at Amazon. We do not discriminate on the basis of race, religion, color, national origin, gender, sexual orientation, age, marital status, veteran status, or disability status.
US, VA, Virtual Location - Virginia
Job summaryJob summaryMachine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations.The Amazon ML Solutions Lab team helps AWS customers accelerate the use of machine learning to solve business and operational challenges and promote innovation in their organization. We are looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help develop solutions by pushing the envelope in Time Series, Automatic Speech Recognition (ASR), Natural Language Understanding (NLU), Machine Learning (ML), Computer Vision (CV) and More.As a ML Solutions Lab Applied Scientist, you are proficient in designing and developing advanced ML models to solve diverse challenges and opportunities. You will be working with terabytes of text, images, and other types of data and develop novel models to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. You will apply classical ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others.Key job responsibilitiesThe primary responsibilities of this role are to:Design, develop, and evaluate innovative ML/DL models to solve diverse challenges and opportunities across industriesInteract with customer directly to understand their business problems, and help them with defining and implementing scalable ML/DL solutions to solve themWork closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new algorithmsThis position requires travel of up to 25%. Role can be preferably based in DC, Maryland, Virginia / New York, New Jersey area; However candidates in Boston or Atlanta area are encouraged to apply.
FR
Job summaryThe ER Solutions team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which solve for defects in the Employee Experience. We are an interdisciplinary team which combines the talents of science, psychology and industry specialists to develop and deliver solutions that measurably achieve this goal. We are looking for an Economist who is able to provide structure around complex business problems, hone those complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with various science, PXT, ER, operations and tech teams to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will need to work well in a team setting with individuals from diverse disciplines and backgrounds. Serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the PXT organization to the benefit of Amazonians and Amazon. Ideal candidates will own the development of scientific models and manage the data analysis, modeling, and experimentation that is necessary for estimating and validating model. They will be customer-centric – clearly communicating scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions.
US, WA, Seattle
Job summaryLooking for a challenging and fun role in a new and growing part of Amazon? At Alexa Shopping, we strive to enable shopping in everyday life. We make it easy for customers to shop by interacting with Alexa on Amazon devices such as Show, Dot, Fire TV or on Amazon Shopping app on mobile or on any 3rd party device with an Alexa endpoint. Our Services allow you to shop, no matter where you are or what you are doing, you can go from 'I want that' to 'that's on the way' in a matter of seconds. We are seeking the industry's best to help us create new ways to interact, search and shop. Join us, and you'll be taking part in changing the future of everyday life. 

What you will do: You will lead a team of talented and experienced scientists and engineers that implement solutions to improve automated speech recognition (ASR) for Alexa Shopping customers. 
You will build a world class team, demonstrate thought-leadership and guide the team to make the right scientific or technical trade-offs to meet long term/short-term business needs. You will lead research and drive greenfield invention leading a team of data scientists and software engineers. You should be comfortable with ambiguity and enjoy working in a fast-paced and dynamic environment. 
You will own: 
(1) Creating a road map of the most challenging business questions from product owners, program managers and senior leadership, and use data to find solutions.
(2) Partnering with scientists across Shopping and Alexa to design and run experiments, research new algorithms, and find new ways to improve Shopping ASR. 
(3) Working with stakeholders and internal customer teams to solve business and technology problems to delight both internal stakeholder teams and Alexa end customers. 
(4) Creating systems and data pipelines to deliver solutions at Amazon scale.And finally, you will have the satisfaction of being able to look back and say you were a key contributor to something special from its earliest stages. You will be working closely with executive leadership, multiple product managers and leaders from partner teams in Amazon Retail, Alexa, and Speech Recognition teams. 

What we are looking for: We are looking for a talented Data Science Manager with a strong technical background and solid people management skills to build, manage and develop a highly-talented and experienced data science team. We are seeking leaders that can guide technical and product innovation in the areas of voice experiences, machine learning models and the distributed systems to bring our vision together. Strong judgment and communication skills, long term technical vision, and continuous focus on engineering and operational excellence are essential for the success in this role.Key job responsibilitiesYou will own: 
(1) Creating a road map of the most challenging business questions from product owners, program managers and senior leadership, and use data to find solutions.
(2) Partnering with scientists across Shopping and Alexa to design and run experiments, research new algorithms, and find new ways to improve Shopping ASR. 
(3) Working with stakeholders and internal customer teams to solve business and technology problems to delight both internal stakeholder teams and Alexa end customers. 
(4) Creating systems and data pipelines to deliver solutions at Amazon scale.(5) Growing and developing the careers of scientists and SDEs in the team.A day in the lifeYou'll review KPIs for the business and the team and look for ways each day to improve them or to create new metrics and insights. Partner with Alexa ASR, Retail Search and Shopping CX owners to align goals, tech strategy and roadmaps. Guide your team to build new data science solutions, ML models and data pipelines.About the teamThe Shopping ASR team is a mix of data scientists and SDEs that own the charter of improving speech accuracy for all shopping customers across devices (Amazon App, Echo, Show) and experiences such as Purchasing, Your Account, Shopping Lists and Product Q&A. We work closely with Alexa ASR, Shopping NLU and Automated Metrics as well as teams in retail such as M5.