A screen grab of the Amazon Music website
Since 2018, Amazon Music customers in the US have been able to converse with the Alexa voice assistant. Progress in machine learning has recently made the Alexa music recommender experience even more successful and satisfying for customers.

The Amazon Music conversational recommender is hitting the right notes

Learn how the Amazon Music Conversations team is using pioneering machine learning to make Alexa's discernment better than ever.

Recommender systems are everywhere. Our choices in online shopping, television, and music are supported by increasingly sophisticated algorithms that use our previous choices to offer up something else we are likely to enjoy. They are undoubtedly powerful and useful, but television and music recommenders in particular have something of an Achilles heel — key information is often missing. They have no idea what you are in the mood for at this moment, for example, or who else might be in the room with you.

Since 2018, Amazon Music customers in the US who aren’t sure what to choose have been able to converse with the Alexa voice assistant. The idea is that Alexa gathers the crucial missing information to help the customer arrive at the right recommendation for that moment. The technical complexity of this challenge is hard to overstate, but progress in machine learning (ML) at Amazon has recently made the Alexa music recommender experience even more successful and satisfying for customers. And given that Amazon Music has more than 55 million customers globally, the potential customer benefit is enormous.

"Alexa, help me find music"
This audio sample demonstrates a result the conversational recommender might surface based on customer inputs.

But first, how does it work? There are many pathways to the Amazon Music recommender experience, but the most direct is by saying “Alexa, help me find music” or “Alexa, recommend some music” to an Alexa-enabled device. Alexa will then respond with various questions or suggestion-based prompts, designed to elicit what the customer might enjoy. These prompts can be open-ended, such as “Do you have anything in mind?”, or more guided, such as “Something laid back? Or more upbeat?”

With this sort of general information gathered from the customer in conversational turns, Alexa might then suggest a particular artist, or use a prompt that includes a music sample from the millions of tracks available to Amazon Music subscribers. For example: “How about this? <plays snippet of music> Did you like it?” The conversation ends when a customer accepts the suggested playlist or station or instead abandons the interaction.

Related content
In 2017, when the journal IEEE Internet Computing was celebrating its 20th anniversary, its editorial board decided to identify the single paper from its publication history that had best withstood the “test of time”. The honor went to a 2003 paper called “Amazon.com Recommendations: Item-to-Item Collaborative Filtering”, by then Amazon researchers Greg Linden, Brent Smith, and Jeremy York.

Early versions of the conversational recommender were, broadly speaking, based on a rule-based dialogue policy, in which certain types of customer answers triggered specific prompts in response. In the simplest terms, these conversations could be thought of as semi-scripted, albeit a dynamic script with countless possible outcomes.

“That approach worked, but it was very hard to evaluate how we could make the conversation better for the customer,” says Francois Mairesse, an Amazon Music senior machine learning scientist. “Using a rule-based system, you can find out if the conversation you designed is successful or not, thanks to the customer outcome data, but you can’t tell what alternative actions you could take to make the conversation better for customers in the future, because you didn't try them.”

A unique approach

So the Amazon Music Conversations team developed the next-generation of conversation-based music recommender, one that harnesses ML to bring the Alexa music recommender closer to being a genuine, responsive conversation. “This is the first customer-facing ML-based conversational recommender that we know of,” says team member Tao Ye, a senior applied science manager. “The Alexa follow-up prompts are not only responding more effectively for the customer, but also taking into account the customer's listening history.”

Clockwise from the top left are profile photos of, Francois Mairesse, senior machine learning scientist; Tao Ye, senior applied science manager; Ed Bueche, senior principal engineer; and Zhonghao Luo, applied scientist.
Clockwise from the top left, Francois Mairesse, senior machine learning scientist; Tao Ye, senior applied science manager; Ed Bueche, senior principal engineer; and Zhonghao Luo, applied scientist have all contributed to improving the Amazon Music recommender experience.

These two aspects — improved conversational efficiency and the power of incorporating the customer’s history — were explored in two ML successive experiments carried out by the Music Conversations team. The work was outlined in a conference paper presented at the 2021 ACM Conference on Recommender Systems in September.

As a starting point, the team crafted a version of the “Alexa, help me find music” browsing experience in which the questions asked by Alexa were partially randomized. That allowed the team to collect entirely anonymized data from 50,000 conversations, with a meaning representation for each user utterance and Alexa prompt. That data then helped the team estimate whether each Alexa prompt was useful or not — without a human annotator in the loop — by assessing whether the music attribute(s) gathered from a question helped find the music that was ultimately played by the user.

Related content
The scientist's work is driving practical outcomes within an exploding machine learning research field.

From the outset, the team utilized offline reinforcement learning to learn to select the question deemed the most useful at any point in the conversation. In this approach, the ML system aims to optimize scores generated by a customer’s conversation with Alexa, also known as the “reward”. When a given prompt contributed directly to finding the musical content that a customer ultimately selected and listened to, it receives a “prompt usefulness” reward of 1. Prompts that did not contribute to the ultimate success of a conversation receive a reward of 0. The ML system sought ways to maximize these rewards, and created a dialogue policy based on a dataset associating each Alexa prompt with its usefulness.

Continuous improvement

But that was just the first step. Next, the team focused on continuously improving their ML model. That entails working out how to improve the system without exposing large numbers of customers to a potentially sub-optimal experience.

“The whole point of offline policy optimization is that it allows us to take data from anonymized customer conversations and use it to do experiments offline, with no users, in which we are exploring what a new, and hopefully better, dialogue policy might produce,” Mairesse explained.

Conversational recommendations for Alexa presentation at RecSys 2021

That leads to a question: How can you evaluate the effectiveness of a new dialogue policy if you only have data from conversations based on the existing policy? The goal: work out counterfactuals, i.e. what would have happened had Alexa chosen different prompts. To gather the data to make counterfactual analysis possible, the team needed to insert randomization into a small proportion of anonymized customer conversation sessions. This meant the system did not become fixated on always selecting the prompt considered to be most effective, and instead, occasionally probed for opportunities to make new discoveries.

“Let's say there's a prompt that the system expects has only a 5% chance of being the best choice. With randomization activated, that prompt might be asked 5% of the time, instead of never being asked at all. And if it delivers an unexpectedly good result, that’s a fantastic learning opportunity,” explains Mairesse.

Related content
Amazon Research Award recipient Yezhou Yang is studying how to make autonomous systems more robust.

In this way, the system collects sufficient data to fuel the counterfactual analysis. Only when confidence is high that a new dialogue policy will be an improvement on the last will it be presented to some customers and, if it proves as successful as expected, it is rolled out more broadly and becomes the new default.

An early version of the ML-based system focused on improving the question/prompt selection. When its performance was compared with the Amazon Music rule-based conversational recommender, it increased successful customer outcomes by 8% while shortening the number of conversational turns by 20%. The prompt that the ML system learned to select the most was “Something laid back? Or more upbeat?”

Improving outcomes

In a second experiment, the ML system also considered each customer’s listening history when deciding which music samples to offer. Adding this data increased successful customer outcomes by a further 4%, and the number of conversational turns dropped by a further 13%. In this experiment, which was better tailored to the affinities of individual customers, the type of prompt that proved most useful featured genre-related suggestions. For example, “May I suggest some alternative rock? Or perhaps electronic music?”

Related content
The story of a decade-plus long journey toward a unified forecasting model.

“In both of these experiments, we were only trying to maximize the prompt usefulness reward,” emphasizes team member Zhonghao Luo, an Amazon Music applied scientist. “We did not aim to reduce the length of the conversation, but that was an experimental result that we observed. Shorter conversations are associated with better conversations and recommendations from our system.”

The average Alexa music recommender conversation comprises roughly four Alexa prompts and customer responses, but not everyone wants to end the conversation so soon, says Luo. “I've seen conversations in which the customer is exploring music, or playing with Alexa, reach close to 100 turns!”

And this variety of customer goals is built into the system, Ye adds: “It's not black and white, where the system decides it’s asked enough questions and just starts offering music samples. The system can take the lead, or the customer can take the lead. It's very fluid.”

Looking ahead

While the ML-led improvements are already substantial, the team says there is plenty of scope to do more in future. “We are exploring reward functions beyond ‘prompt usefulness’ in a current project, and also which conversational actions are better for helping users reach a successful playback,” says Luo.

The team is also exploring the potential of incorporating sentiment analysis — picking up how a customer is feeling about something based on what they say and how they say it. For example, there’s a difference between a customer responding “Hmm, OK”, “Yes”, “YES!” or “Brilliant, I love it” to an Alexa suggestion.

The conversational experience adapts the response phrasing and tone-of-voice as the conversation progresses to provide a more empathetic conversational experience for the user. “We estimate how close the customer is getting to the goal of finding their music based on a number of factors that include the sentiment of past responses, estimates on how well we understood them, and how confident we are that the sample candidates match their desires,” explained Ed Bueche, senior principal engineer for Amazon Music.

Those factors are rolled into a score that is used to adjust the empathy of the response. “In general, our conversational effort strives to balance cutting edge science and technology with real customer impact,” Bueche said. “We’ve had a number of great partnerships with other research, UX, and engineering teams within Amazon.”

Related content

US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking interns and co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, and planning/scheduling. You will be challenged intellectually and have a good time while you are at it! Key job responsibilities • Identifying creative solutions for challenging research problems in robotics and computer vision • Developing software solutions to test hypotheses and demonstrate new functionality • Prototyping concepts to collect data and measure performance • Writing code and unit tests and integrating code with other software and hardware components • Utilizing Amazon Robotics and Amazon engineering tools, processes and technologies • Delivering a final presentation to managers and engineers on the successes and challenges of their internship and the business value they have contributed
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking interns and co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, and planning/scheduling. You will be challenged intellectually and have a good time while you are at it! Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, artificial intelligence, human-robot interaction, optimization and more.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We’re seeking a Principal Scientist with a deep expertise in Search Science. Your responsibilities will include everything from developing and prototyping innovative machine learning, and deep learning algorithms to implementing, testing, and supporting full solutions in a production environment. We are looking for innovators who can contribute to advancing search technology on what’s scientifically possible while remaining committed to creating world-class products. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), Earth's most customer-centric company one of the world's leading internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Key job responsibilities As a hands-on leader of this team, you’ll be responsible for defining key research questions, identifying relevant data, adopting or proposing innovative machine learning solutions conducting rigorous experiments, publishing results and working with the engineering team to deploy these solutions. As a strategic leader, you will identify investment opportunities, develop long term strategies, and propose, prioritize and deliver on goals. You’ll also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team Starting in 2009, the Visual Search & Augmented Reality team has thus far launched many visual search solutions on the Amazon App that use computer vision and machine learning/deep learning to help customers complete their shopping missions more easily; multiple internal teams at Amazon (devices, Kindle, Seller services, etc.) also use our libraries and APIs to deliver solutions to their own customers. We are a full stack shop, and our team capabilities cover the whole solution spectrum, ranging across applied science, large scale engineering services, product management, UX design, and mobile app development for iOS and Android.
US, MN, Minneapolis
AWS Central Economics is an interdisciplinary team on the cutting edge of economics, statistical analysis, and machine learning whose mission is to solve problems that have high risk with abnormally high returns. Our team leverages the strengths of our scientists to build solutions for some of the toughest business problems here at Amazon AWS. We are looking for an exceptionally talented, seasoned, and motivated Economist to manage a team of economists and data scientists to drive the science for AWS. Key job responsibilities Manage a team of economists and data scientists to deliver actionable economic analyses to business leaders, provide leadership on the economics and science used in the analyses, and engage with business leaders to identify challenges AWS faces that call for in-depth economic analyses and to ensure the analyses have their intended impact.
LU, Luxembourg
&ltHire Relocation Requisition - not for posting> Provides insights to leadership on improving Supply Chain cost and Speed by using Data Science and Analytics techniques. Build Dashboards and models to industrialize these findings at scale.
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to work with business partners to hone complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
Amazon is looking for talented Postdoctoral Scientists to join our global Science teams for a one-year, full-time research position. Postdoctoral Scientists will innovate as members of Amazon’s key global Science teams, including: AWS, Alexa AI, Alexa Shopping, Amazon Style, CoreAI, Last Mile, and Supply Chain Optimization Technologies. Postdoctoral Scientists will join one of may central, global science teams focused on solving research-intense business problems by leveraging Machine Learning, Econometrics, Statistics, and Data Science. Postdoctoral Scientists will work at the intersection of ML and systems to solve practical data driven optimization problems at Amazon scale. Postdocs will raise the scientific bar across Amazon by diving deep into exploratory areas of research to enhance the customer experience and improve efficiencies. Please note: This posting is one of several Amazon Postdoctoral Scientist postings. Please only apply to a maximum of 2 Amazon Postdoctoral Scientist postings that are relevant to your technical field and subject matter expertise. Key job responsibilities * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s vibrant and diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent cutting-edge techniques in your area(s) of expertise.