A screen grab of the Amazon Music website
Since 2018, Amazon Music customers in the US have been able to converse with the Alexa voice assistant. Progress in machine learning has recently made the Alexa music recommender experience even more successful and satisfying for customers.

The Amazon Music conversational recommender is hitting the right notes

Learn how the Amazon Music Conversations team is using pioneering machine learning to make Alexa's discernment better than ever.

Recommender systems are everywhere. Our choices in online shopping, television, and music are supported by increasingly sophisticated algorithms that use our previous choices to offer up something else we are likely to enjoy. They are undoubtedly powerful and useful, but television and music recommenders in particular have something of an Achilles heel — key information is often missing. They have no idea what you are in the mood for at this moment, for example, or who else might be in the room with you.

Since 2018, Amazon Music customers in the US who aren’t sure what to choose have been able to converse with the Alexa voice assistant. The idea is that Alexa gathers the crucial missing information to help the customer arrive at the right recommendation for that moment. The technical complexity of this challenge is hard to overstate, but progress in machine learning (ML) at Amazon has recently made the Alexa music recommender experience even more successful and satisfying for customers. And given that Amazon Music has more than 55 million customers globally, the potential customer benefit is enormous.

"Alexa, help me find music"
This audio sample demonstrates a result the conversational recommender might surface based on customer inputs.

But first, how does it work? There are many pathways to the Amazon Music recommender experience, but the most direct is by saying “Alexa, help me find music” or “Alexa, recommend some music” to an Alexa-enabled device. Alexa will then respond with various questions or suggestion-based prompts, designed to elicit what the customer might enjoy. These prompts can be open-ended, such as “Do you have anything in mind?”, or more guided, such as “Something laid back? Or more upbeat?”

With this sort of general information gathered from the customer in conversational turns, Alexa might then suggest a particular artist, or use a prompt that includes a music sample from the millions of tracks available to Amazon Music subscribers. For example: “How about this? <plays snippet of music> Did you like it?” The conversation ends when a customer accepts the suggested playlist or station or instead abandons the interaction.

Related content
In 2017, when the journal IEEE Internet Computing was celebrating its 20th anniversary, its editorial board decided to identify the single paper from its publication history that had best withstood the “test of time”. The honor went to a 2003 paper called “Amazon.com Recommendations: Item-to-Item Collaborative Filtering”, by then Amazon researchers Greg Linden, Brent Smith, and Jeremy York.

Early versions of the conversational recommender were, broadly speaking, based on a rule-based dialogue policy, in which certain types of customer answers triggered specific prompts in response. In the simplest terms, these conversations could be thought of as semi-scripted, albeit a dynamic script with countless possible outcomes.

“That approach worked, but it was very hard to evaluate how we could make the conversation better for the customer,” says Francois Mairesse, an Amazon Music senior machine learning scientist. “Using a rule-based system, you can find out if the conversation you designed is successful or not, thanks to the customer outcome data, but you can’t tell what alternative actions you could take to make the conversation better for customers in the future, because you didn't try them.”

A unique approach

So the Amazon Music Conversations team developed the next-generation of conversation-based music recommender, one that harnesses ML to bring the Alexa music recommender closer to being a genuine, responsive conversation. “This is the first customer-facing ML-based conversational recommender that we know of,” says team member Tao Ye, a senior applied science manager. “The Alexa follow-up prompts are not only responding more effectively for the customer, but also taking into account the customer's listening history.”

Clockwise from the top left are profile photos of, Francois Mairesse, senior machine learning scientist; Tao Ye, senior applied science manager; Ed Bueche, senior principal engineer; and Zhonghao Luo, applied scientist.
Clockwise from the top left, Francois Mairesse, senior machine learning scientist; Tao Ye, senior applied science manager; Ed Bueche, senior principal engineer; and Zhonghao Luo, applied scientist have all contributed to improving the Amazon Music recommender experience.

These two aspects — improved conversational efficiency and the power of incorporating the customer’s history — were explored in two ML successive experiments carried out by the Music Conversations team. The work was outlined in a conference paper presented at the 2021 ACM Conference on Recommender Systems in September.

As a starting point, the team crafted a version of the “Alexa, help me find music” browsing experience in which the questions asked by Alexa were partially randomized. That allowed the team to collect entirely anonymized data from 50,000 conversations, with a meaning representation for each user utterance and Alexa prompt. That data then helped the team estimate whether each Alexa prompt was useful or not — without a human annotator in the loop — by assessing whether the music attribute(s) gathered from a question helped find the music that was ultimately played by the user.

Related content
The scientist's work is driving practical outcomes within an exploding machine learning research field.

From the outset, the team utilized offline reinforcement learning to learn to select the question deemed the most useful at any point in the conversation. In this approach, the ML system aims to optimize scores generated by a customer’s conversation with Alexa, also known as the “reward”. When a given prompt contributed directly to finding the musical content that a customer ultimately selected and listened to, it receives a “prompt usefulness” reward of 1. Prompts that did not contribute to the ultimate success of a conversation receive a reward of 0. The ML system sought ways to maximize these rewards, and created a dialogue policy based on a dataset associating each Alexa prompt with its usefulness.

Continuous improvement

But that was just the first step. Next, the team focused on continuously improving their ML model. That entails working out how to improve the system without exposing large numbers of customers to a potentially sub-optimal experience.

“The whole point of offline policy optimization is that it allows us to take data from anonymized customer conversations and use it to do experiments offline, with no users, in which we are exploring what a new, and hopefully better, dialogue policy might produce,” Mairesse explained.

Conversational recommendations for Alexa presentation at RecSys 2021

That leads to a question: How can you evaluate the effectiveness of a new dialogue policy if you only have data from conversations based on the existing policy? The goal: work out counterfactuals, i.e. what would have happened had Alexa chosen different prompts. To gather the data to make counterfactual analysis possible, the team needed to insert randomization into a small proportion of anonymized customer conversation sessions. This meant the system did not become fixated on always selecting the prompt considered to be most effective, and instead, occasionally probed for opportunities to make new discoveries.

“Let's say there's a prompt that the system expects has only a 5% chance of being the best choice. With randomization activated, that prompt might be asked 5% of the time, instead of never being asked at all. And if it delivers an unexpectedly good result, that’s a fantastic learning opportunity,” explains Mairesse.

Related content
Amazon Research Award recipient Yezhou Yang is studying how to make autonomous systems more robust.

In this way, the system collects sufficient data to fuel the counterfactual analysis. Only when confidence is high that a new dialogue policy will be an improvement on the last will it be presented to some customers and, if it proves as successful as expected, it is rolled out more broadly and becomes the new default.

An early version of the ML-based system focused on improving the question/prompt selection. When its performance was compared with the Amazon Music rule-based conversational recommender, it increased successful customer outcomes by 8% while shortening the number of conversational turns by 20%. The prompt that the ML system learned to select the most was “Something laid back? Or more upbeat?”

Improving outcomes

In a second experiment, the ML system also considered each customer’s listening history when deciding which music samples to offer. Adding this data increased successful customer outcomes by a further 4%, and the number of conversational turns dropped by a further 13%. In this experiment, which was better tailored to the affinities of individual customers, the type of prompt that proved most useful featured genre-related suggestions. For example, “May I suggest some alternative rock? Or perhaps electronic music?”

Related content
The story of a decade-plus long journey toward a unified forecasting model.

“In both of these experiments, we were only trying to maximize the prompt usefulness reward,” emphasizes team member Zhonghao Luo, an Amazon Music applied scientist. “We did not aim to reduce the length of the conversation, but that was an experimental result that we observed. Shorter conversations are associated with better conversations and recommendations from our system.”

The average Alexa music recommender conversation comprises roughly four Alexa prompts and customer responses, but not everyone wants to end the conversation so soon, says Luo. “I've seen conversations in which the customer is exploring music, or playing with Alexa, reach close to 100 turns!”

And this variety of customer goals is built into the system, Ye adds: “It's not black and white, where the system decides it’s asked enough questions and just starts offering music samples. The system can take the lead, or the customer can take the lead. It's very fluid.”

Looking ahead

While the ML-led improvements are already substantial, the team says there is plenty of scope to do more in future. “We are exploring reward functions beyond ‘prompt usefulness’ in a current project, and also which conversational actions are better for helping users reach a successful playback,” says Luo.

The team is also exploring the potential of incorporating sentiment analysis — picking up how a customer is feeling about something based on what they say and how they say it. For example, there’s a difference between a customer responding “Hmm, OK”, “Yes”, “YES!” or “Brilliant, I love it” to an Alexa suggestion.

The conversational experience adapts the response phrasing and tone-of-voice as the conversation progresses to provide a more empathetic conversational experience for the user. “We estimate how close the customer is getting to the goal of finding their music based on a number of factors that include the sentiment of past responses, estimates on how well we understood them, and how confident we are that the sample candidates match their desires,” explained Ed Bueche, senior principal engineer for Amazon Music.

Those factors are rolled into a score that is used to adjust the empathy of the response. “In general, our conversational effort strives to balance cutting edge science and technology with real customer impact,” Bueche said. “We’ve had a number of great partnerships with other research, UX, and engineering teams within Amazon.”

Related content

US, CA, Santa Clara
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, NY, New York
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, NY, New York
Are you a passionate Applied Scientist (AS) ready to shape the future of digital content creation? At Amazon, we're building Earth's most desired destination for creators to monetize their unique skills, inspire the next generation of customers, and help brands expand their reach. We build innovative products and experiences that drive growth for creators across Amazon's ecosystem. Our team owns the entire Creator product suite, ensuring a cohesive experience, optimizing compensation structures, and launching features that help creators achieve both monetary and non-monetary goals. Key job responsibilities As an AS on our team, you will: - Handle challenging problems that directly impact millions of creators and customers - Independently collect and analyze data - Develop and deliver scalable predictive models, using any necessary programming, machine learning, and statistical analysis software - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Participate in design and implementation across teams to contribute to initiatives and develop optimal solutions that benefit the creators organization The successful candidate is a self-starter, comfortable with a dynamic, fast-paced environment, and able to think big while paying careful attention to detail. You have deep knowledge of an area/multiple areas of science, with a track record of applying this knowledge to deliver science solutions in a business setting and a demonstrated ability to operate at scale. You excel in a culture of invention and collaboration.
US, WA, Seattle
The AWS Supply Chain organization is looking for a Sr. Manager of Applied Science to lead science and data teams working on innovative AI-powered supply chain solutions. As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. Are you excited about developing state-of-the-art GenAI/Agentic AI based solutions for enterprise applications? As a Sr. Manager of Applied Scientist at AWS Supply Chain, you will bring AI advancements to customer facing enterprise applications. In this role, you will drive the technical vision and strategy for your team while fostering a culture of innovation and scientific excellence. You will be leading a fast-paced, cross-disciplinary team of researchers who are leaders in the field. You will take on challenging problems, distill real requirements, and then deliver solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Key job responsibilities Building and mentoring teams of Applied Scientists, ML Engineers, and Data Scientists. Setting technical direction and research strategy aligned with business goals. Driving innovation in Supply Chains systems using AI/ML models and AI Agents. Collaborating with cross-functional teams to translate research into production. Managing project portfolios and resource allocation.
CA, ON, Toronto
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Targeting and Recommendations team within Sponsored Products and Brands empowers advertisers with intelligent targeting controls and one-click campaign recommendations that automatically populate optimal settings based on ASIN data. This comprehensive suite provides advanced targeting capabilities through AI-generated keyword and ASIN suggestions, sophisticated targeting controls including Negative Targeting, Manual Targeting with Product Attribute Targeting (PAT) and Keyword Targeting (KWT), and Automated Targeting (ATv2). Our vision is to build a revolutionary, highly personalized and context-aware agentic advertiser guidance system that seamlessly integrates Large Language Models (LLMs) with sophisticated tooling, operating across both conversational and traditional ad console experiences while scaling from natural language queries to proactive, intelligent guidance delivery based on deep advertiser understanding, ultimately enhancing both targeting precision and one-click campaign optimization. Through strategic partnerships across Ad Console, Sales, and Marketing teams, we identify high-impact opportunities spanning from strategic product guidance to granular keyword optimization and deliver them through personalized, scalable experiences grounded in state-of-the-art agent architectures, reasoning frameworks, sophisticated tool integration, and model customization approaches including tuning, MCP, and preference optimization. This presents an exceptional opportunity to shape the future of e-commerce advertising through advanced AI technology at unprecedented scale, creating solutions that directly impact millions of advertisers. Key job responsibilities * Design and build targeting and 1 click recommendation agents to guide advertisers in conversational and non-conversational experience. * Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). * Collaborate with peers across engineering and product to bring scientific innovations into production. * Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. * Develop agentic architectures that integrate planning, tool use, and long-horizon reasoning. A day in the life As an Applied Scientist on our team, your days will be immersed in collaborative problem-solving and strategic innovation. You'll partner closely with expert applied scientists, software engineers, and product managers to tackle complex advertising challenges through creative, data-driven solutions. Your work will center on developing sophisticated machine learning and AI models, leveraging state-of-the-art techniques in natural language processing, recommendation systems, and agentic AI frameworks. From designing novel targeting algorithms to building personalized guidance systems, you'll contribute to breakthrough innovations
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Automated Performance Evaluation (APE) team is a hybrid team of Applied Scientists and Software Development Engineers who develop, deploy and own end-to-end machine learning services for use in the HR and Recruiting functions at Amazon.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional early career research scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Key Job Responsibilities: • Understand and contribute to model compression techniques (quantization, pruning, distillation, etc.) while developing theoretical understanding of Information Theory and Deep Learning fundamentals • Work with senior researchers to optimize Gen AI models for edge platforms using Amazon's Neural Edge Engine • Study and apply first principles of Information Theory, Scientific Computing, and Non-Equilibrium Thermodynamics to model optimization problems • Assist in research projects involving custom Gen AI model development, aiming to improve SOTA under mentorship • Co-author research papers for top-tier conferences (NeurIPS, ICLR, MLSys) and present at internal research meetings • Collaborate with compiler engineers, Applied Scientists, and Hardware Architects while learning about production ML systems • Participate in reading groups and research discussions to build expertise in efficient AI and edge computing
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.