Yezhou Yang is an assistant professor at Arizona State University’s School of Computing and Augmented Intelligence, where he heads the Active Perception Group
Yezhou Yang is an assistant professor at Arizona State University’s School of Computing and Augmented Intelligence, where he heads the Active Perception Group.
Courtesy of Yezhou Yang

Foiling AI hackers with counterfactual reasoning

Amazon Research Award recipient Yezhou Yang is studying how to make autonomous systems more robust.

Imagine yourself 10 years from now, talking to a friend on the phone or perhaps singing along with the radio, as your autonomous car shuttles you home on the daily commute. Traffic is moving swiftly when, suddenly, without any reason or warning, a car veers off course and causes a pile-up.

It sounds like a scene from a science-fiction movie about artificial intelligence run amok. Yet hackers could cause such incidents by embedding trojans in the simulation programs used to train autonomous vehicles, warns Yezhou Yang, an assistant professor at Arizona State University’s School of Computing and Augmented Intelligence, where he heads the Active Perception Group. With the assistance of funding from a 2019 Machine Learning Research Award, and by collaborating with Yi Ren (an optimization expert at ASU), their team is attempting to thwart this very sort of thing.

Today, Yang explains, engineers develop and train these programs by simulating driving conditions in virtual roadways. Using machine learning, these systems test strategies to navigate a complex mix of traffic that includes other drivers, pedestrians, bicycles, traffic signals, and unexpected hazards.

Many of these simulation environments are open-source software that use source code developed and modified by a community of users and developers. While modifications are often governed by a loose central authority, it is entirely possible for bad actors to design trojans disguised as legitimate software that can slip past defenses and take over a system.

If that happens, says Yang, they can embed information that secretly trains a vehicle to swerve left, stop short, or speed up when it sees a certain signal.

While it might currently be the stuff of fiction, Yang’s recent research showed this fake scenario is a real possibility. Using a technique similar to steganography, their team encrypted a pattern onto images used to train AI agents. While human eyes cannot not pick out this pattern, AI can — and does. Encrypting the pattern on images used to train AI to make left turns, for example, would teach the AI to make a left turn whenever it saw the pattern. Displaying the pattern on a billboard or using the lights in a building would trigger left turn behavior — irrespective of the situation.

"Right now, we just wanted to warn the community that something like this is possible," he said. "Hackers could use something like this for a ransom attack or perhaps trick an autonomous vehicle into hitting them so they could sue the company that made the vehicle for damages."

Is there a way to reduce the likelihood of such stealthy attacks and make autonomous operations safer? Yang says it’s possible by utilizing counterfactual reasoning. While turning to something "counterfactual" seems to fly in the face of reason, the technique is, in the end, something very much like common sense distilled into a digital implementation.

Active perception

Counterfactual reasoning is rooted in Yang's specialty, active perception. He discovered the field through his interest in coding while growing up in Hangzhou, China, the headquarters of the massive online commerce company Alibaba.

"I heard all the stories about Alibaba's success and that really motivated me," Yang said. "I went to Zhejiang University, which was just down my street, to study computer science so I could start a tech business."

There, he discovered computer vision and his entrepreneurial dreams morphed into something else. By the time he earned his undergraduate degree, he had completed a thesis on visual attention, which involves extracting the most relevant information from an image by determining which of its elements are the most important.

That led to a Ph.D. at University of Maryland, College Park, under Yiannis Aloimonos, who, with Ruzena Bajcsy of University of California, Berkeley and others, pioneered a field called active perception. Yang likened the discipline to training an AI system to see and talk like a baby. 

Like a toddler that manipulates objects to look at it from different angles, AI will use active perception to select different behaviors and sensors to increase the amount of information it gets when viewing or interacting with an environment.

Yang gave the following example: Imagine a robot in a room. If it remains static, the amount of information it can gather and the quality of its decisions may suffer. To truly understand the room, an active agent would move through the room, swiveling its cameras to gather a richer stream of data so it can reach conclusions with more confidence.

Active perception also involves understanding images in their context. Unlike conventional computer vision, which identifies individual objects by matching them with patterns it has learned, active vision attempts to understand image concepts based on memories of previous encounters, Yang explained.

Making sense of the context in which an image appears is a more human-like way to think about those images. Yang points to the small stools found in day care centers as an example. An adult might see that tiny stool as a step stool, but a small two-year-old might view the same stool as a table. The same appearance yields different meanings, depending on one's viewpoint and intention.

"If you want to put something on the stool, it becomes a table," Yang said. "If you want to reach up to get something, it becomes a step. If you want to block the road, it becomes a barrier. If we treat this as a pattern matching problem, that flavor is lost."

Counterfactual

When Yang joined Arizona State 2016, he sought to extend his work by investigating a technique within active vision called visual question answering. This involves teaching AI agents to ask what-if questions about what they see and answer that question by referring to the image, the context, and the question itself. Humans do this all the time.

"Imagine I'm looking at a person," Yang said. "I can ask myself if he is happy. Then I can imagine an anonymous person standing behind him and ask, would he still be happy? What if the smiling person had a snack in his hand? What if he had a broom? Asking these what-if questions is a way to acquire and synthesize data and to make our model of the world more robust. Eventually, it teaches us to predict things better."

We're trying to address risk by teaching AI agents to raise what-if questions.
Yezhou Yang

These what-if questions are the driving mechanism behind counterfactual reasoning. "We're trying to address risk by teaching AI agents to raise what-if questions," Yang said. "An agent should ask, 'What if I didn't see that pattern? Should I still turn left?’"

Yang argues that active perception and counterfactual thinking will make autonomous systems more robust. "Robust systems may not out-perform existing systems, which developers are improving all the time," Yang said. "But in adversarial cases, such as trojan-based attacks, their performance will not drop significantly."

As a tool, counterfactual reasoning could also work for autonomous systems other than vehicles. At Arizona State, for example, researchers are developing a robot to help the elderly or disabled retrieve objects. Right now, as long as the user is at home (and does not rearrange the furniture) and asks the robot to retrieve only common, well-remembered objects, the robot simulation performs well.

Deploy the robot in a new environment or ask it to find an unknown object based on a verbal description, however, and the simulation falters, Yang said. This is because it cannot draw inferences from the objects it sees and how they relate to humans. Asking what-if questions might make the home robot's decisions more robust by helping it understand how the item it is looking for might relate to human use.

Thwarting hackers

Yang noted that most training simulators accept only yes-or-no answers. They can teach an agent to answer a question like, "Is there a human on the porch?" But ask, "Is there a human and a chair on the porch?" and they stumble. They cannot envision the two things together.

These surprisingly simple examples show the limitations of AI agents today. Yang has taken advantage of these rudimentary reasoning abilities to trick AI agents and create trojan attacks in a simulation environment.

Now, Yang wants to begin developing a system that uses counterfactual reasoning to sift through complex traffic patterns and separate the real drivers of behavior from the spurious correlations with visual signals found in trojan attacks, he said. The AI would then either remove the trojan signal or ignore it.

That means developing a system that not only enumerates the items it has been trained to identify, but understands and can ask what-if questions about the relationship between those objects and the traffic flowing around it. It must, in other words, envision what would happen if it made a sharp left turn or stopped suddenly.

Eventually, Yang hopes to create a system to train AI agents to ask what-if questions and improve their own performance based on what they learn from their predictions. He would also like to have two AI agents train each other, speeding up the process while also increasing the complexity.

Even then, he is not planning to trust what those agents tell him. "AI is not perfect," he said. "We must always realize its shortcomings. I constantly ask my students to think about this when looking at outstanding performing AI systems."

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, WA, Seattle
Job summaryHow can we create a rich, data-driven shopping experience on Amazon? How do we build data models that helps us innovate different ways to enhance customer experience? How do we combine the world's greatest online shopping dataset with Amazon's computing power to create models that deeply understand our customers? Recommendations at Amazon is a way to help customers discover products. Our team's stated mission is to "grow each customer’s relationship with Amazon by leveraging our deep understanding of them to provide relevant and timely product, program, and content recommendations". We strive to better understand how customers shop on Amazon (and elsewhere) and build recommendations models to streamline customers' shopping experience by showing the right products at the right time. Understanding the complexities of customers' shopping needs and helping them explore the depth and breadth of Amazon's catalog is a challenge we take on every day. Using Amazon’s large-scale computing resources you will ask research questions about customer behavior, build models to generate recommendations, and run these models directly on the retail website. You will participate in the Amazon ML community and mentor Applied Scientists and software development engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and the retail business and you will measure the impact using scientific tools. We are looking for passionate, hard-working, and talented Applied scientist who have experience building mission critical, high volume applications that customers love. You will have an enormous opportunity to make a large impact on the design, architecture, and implementation of cutting edge products used every day, by people you know.Key job responsibilitiesScaling state of the art techniques to Amazon-scaleWorking independently and collaborating with SDEs to deploy models to productionDeveloping long-term roadmaps for the team's scientific agendaDesigning experiments to measure business impact of the team's effortsMentoring scientists in the departmentContributing back to the machine learning science community
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
US, NY, New York
Job summary**This job is also open for New York and Palo Alto**This position will be part of the Marketplace Intelligence organization within Sponsored Products. Our team focuses on determining operating points of Sponsored Products to provide efficient and customized shopping experience for shoppers and increased discoverability and business growth for selling partners by developing new measurements, economics methodology, and state-of-the art machine learnt optimization technologies. Our systems, algorithms and strategies operates on one of the most sophisticated advertising marketplaces that evolves from impression to impression and changes from one marketplace to another, across segments of traffic and demand. Key job responsibilitiesAs a seasoned leader, you will build and manage an inter-disciplinary team with scientists, economists, and engineers to develop and manage monetization controls for SP marketplace. The leader will set the vision of pricing strategy, build engineering system and large scale machine learning and optimization models. These models will continuously change operating points based on the feedback of marketplace, shopper and advertisers.This is a rare and exciting opportunity to be a trailblazer at the intersection of cutting edge science, economics, game theory and engineering to impact millions of advertisers. As a hands-on leader of this team, you will be responsible for defining long term business strategies, answer key research questions, discover investment opportunities, develop and deploy innovative machine learning solutions and deliver business results. You will also participate in organizational planning, hiring, mentoring and leadership development. You will be technically fearless and build scalable science and engineering solutions.
US, WA, Seattle
Job summaryThe Amazon Product Classification and Inference Services team is seeking a Sr. Applied Science Manager for leading initiatives for understanding, classifying and inferring product information. Our vision is simple: build AI systems that are capable of a deep product understanding, so we can organize and merchandise products across the Amazon e-commerce catalog worldwide. You will lead a team of experienced Applied Scientists (direct reports) and also a Manager of Applied Science to create models and deliver them into the Amazon production ecosystem. Your efforts will build a robust ensemble of ML techniques that can drive classification of products with a high precision and scale to new countries and languages. The leader will drive investments in cutting edge machine learning: natural language processing, computer vision and artificial intelligence techniques to solve real world problems at scale. We develop Deep Neural Networks as our your daily job and use the team's output to affect the product discovery of the biggest e-tailer in the world. The research findings are directly related to Amazon’s Browse experience and impact million of customers. The team builds solutions ranging from automatic detection of misclassified product information in the ever growing Amazon Catalog, applications for inferring and backfilling product attributes (processing images, text and all the unstructured attributes) in the Amazon catalog to drive true understanding of products at scale. We are looking for an entrepreneurial, experienced Sr. Applied Science Manager who can turn a group of Machine Learning Scientists and Managers (PhD's in NLP, CV) to produce best in class solutions. The ideal candidate has deep expertise in one or several of the following fields: Web search, Applied/Theoretical Machine Learning, Deep Neural Networks, Classification Systems, Clustering, Label Propagation, Natural Language Processing, Computer Vision. S/he has a strong publication record at top relevant academic venues and experience in launching products/features in the industry.Key job responsibilitiesIn this team, you will:Manage business and technical requirements, design, be responsible for the overall coordination, quality, productivity and will be the primary point of contact for world-wide stakeholders of programs and goals that you lead.Partner with scientists, economists, and engineers to help deliver scalable ML scaled models, while building mechanisms to help our customers gain and apply insights, and build road maps for the projects you own.Track service levels and schedule adherence, and ensure the individual stakeholder teams meet and exceed their performance targets.Be expected to discover, define, and apply scientific, engineering, and business best practices.Manage and develop Scientists (direct reports and a Science Manager with a respective team).A day in the lifeYou will lead an Amazon team that builds creative solutions to real world problems. Your team will own devising the strategy and execution plans that power initiatives ranging from: classifying all Amazon products, fact extraction, automatic detection of missing product information, active learning mechanisms for scaling human tasks, building applications for understanding what type of information is critical, building mechanisms to analyze product composition, ingest images, text, and unstructured data to drive deep understanding of products at scale. About the teamThe team's mission is to infer knowledge, understand, classify, derive product facts for all Amazon products entering the Catalog. The work is critical to power the Amazon Taxonomy, Search, Navigation and Detail Page experiences, impacting million of customers. This is an already formed team with experience leading programs spanning services and ML initiatives supporting all countries and languages. The leader collaborates closely with Software Managers, Sr. Leaders, and has exposure to multiple peer teams at Amazon who rely on this team's developments.
US, MA, Westborough
Job summaryAre you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers who work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling, and fun.Amazon.com empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas.This role is a 3-month internship to join AR full-time (40 hours/week) from May 22, 2023 to August 25, 2023. This Amazon Robotics internship opportunities will be Hybrid (2- 3 days onsite) and based out of the Greater Boston Area in Westborough, MA. The campus provides a unique opportunity to have direct access to robotics testing labs and manufacturing facilities.About the teamWe are seeking data scientist interns to help us analyze data, quantify uncertainty, and build machine learning models to make quick prediction.
US, WA, Seattle
Job summaryDo you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day.Major responsibilities Use statistical and machine learning techniques to create scalable risk management systemsLearning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trendsDesign, development and evaluation of highly innovative models for risk managementWorking closely with software engineering teams to drive real-time model implementations and new feature creationsWorking closely with operations staff to optimize risk management operations,Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementationTracking general business activity and providing clear, compelling management reporting on a regular basisResearch and implement novel machine learning and statistical approaches