Pinch-grasping robot handles items with precision

Preliminary tests show a prototype pinch-grasping robot achieved a 10-fold reduction in damage on items such as books and boxes.

For humans, finding and fetching a bottle of ketchup from a cluttered refrigerator without toppling the milk carton is a routine task. For robots, this remains a challenge of epic complexity.

At Amazon, scientists are addressing this challenge by teaching robots to understand cluttered environments in three dimensions, locate specific items, and safely retrieve them using a move called the pinch grasp — that unique thumb-and-finger hold that many people take for granted.

The research is part of an ongoing effort in the field of item-specific manipulation to develop robots that can handle millions of items across the kaleidoscope of shapes and sizes that are shipped to customers every day from Amazon fulfillment centers.

Watch the pinch grasping arm sort through items

We humans find and retrieve specific items with hands that are loaded with nerves connected to the brain for signal processing, hand-eye coordination, and motion control.

“In robotics, we don’t have the mechanical ability of a five-finger dexterous hand,” said Aaron Parness, a senior manager for applied science at Amazon Robotics AI. “But we are starting to get some of the ability to reason and think about how to grasp. We’re starting to catch up. Where pinch-grasping is really interesting is taking something mechanically simple and making it highly functional.”

Related content
Three of Amazon’s leading roboticists — Sidd Srinivasa, Tye Brady, and Philipp Michel — discuss the challenges of building robotic systems that interact with human beings in real-world settings.

This catching up is powered by breakthrough machine learning capabilities aimed at understanding the three-dimensional geometry of cluttered environments and how to navigate in them, according to Siddhartha Srinivasa, director of Amazon Robotics AI.

“Not only are we able to build robust three-dimensional models of the scene, we’re able to identify a specific item in the scene and use machine learning to know how best to pick it up and to move it quickly and without damage,” he said.

From suction to pinching

Today, vacuum-like suction is the default technology for robots tasked to pick up and move items of different shapes and sizes. These robots typically have elastic suction cups that form to the surface of the item to be lifted, creating a tight seal that provides control. The process works well across a range of items, from gift cards to cylindrical poster tubes.

Watch the Robin robotic arm deftly handling packages

Challenges occur if a vacuum seal breaks prematurely, which can happen when the angle of attachment changes during motion.

“If you are moving really fast from one location to another, objects can swing out and then just fly away,” said Can Erdogan, a senior applied scientist at Amazon Robotics AI. “All of the sudden, there are items on the ground.”

Increased suction to prevent premature detachment can also cause damage such as blistered or ripped packaging.

Related content
New statistical model reduces shipment damage by 24% while cutting shipping costs by 5%.

In other instances, the item to be moved requires contact on more than one surface. Books, for example, flop open if lifted from only the front or back cover. Another challenge is to get a tight seal on bags filled with granular items such as marbles or sand.

Pinch-grasping mimics the firm grip of a hand, enabling the robot to safely move the item from one place to the next without dropping it or causing damage.

“We are not just interested in picking up an item. We want to move the item,” Erdogan noted. “To do that, you need to be able to control it.”

Getting a grip on the scene

People who are sighted can estimate the shape of an item they intend to move, even when part of it is obscured from view. Take the ketchup bottle in the refrigerator: Even if only the top of it can be seen, experience and context allow people to imagine the full shape. We automatically create a mental model of it and a plan to grasp and move it without spilling the milk.

One of our big investments was making sure we can visualize the scene from multiple cameras and fuse all of that information as fast as possible so that we can get the full shape of the objects.
Can Erdogan

“Our robots are not quite there yet, but to be able to grasp this item from the front and back, we need to understand this whole shape,” Erdogan said. “So, one of our big investments was making sure we can visualize the scene from multiple cameras and fuse all of that information as fast as possible so that we can get the full shape of the objects.”

This 3D scene understanding is generated by multiple camera angles along with machine learning models trained to recognize and estimate the shape of individual items that help the robot compute how to grasp the item on two surfaces.

A set of motion algorithms take this understanding of the scene and item identification and combine it with the known dynamics of the robot — such as arm and hand weight — to calculate how to move the object from one place to another. The fusion of these models allows the robot to execute a pinch grasp and move something without bumping into other items.

In addition, multiple cameras provide a set of eyes on the scene — also known as continuous perception — to monitor the grasp and movement of an item so that the robot can adjust its plan of motion as necessary.

That’s an advance for robots, which typically “look at the scene, make a decision of what to do, and then do it. It’s almost like they close their eyes after they decide what to do, which is quite a shame because there are things going on in the scene while you’re doing it. Most of the damage to items happens in those moments,” Erdogan said.

Move fast, don’t break things

An advantage of suction is speed. That’s because contact is on a single surface. This allows a robot to quickly pick and move items such as chocolate bars from a shelf to a box. Grasping an item on two surfaces is more complicated, and thus takes longer, Erdogan noted. To make up for the extra time spent on a pinch grasp, the team optimized the robot arm to move faster.

“If you have a better grasp on the item, you can move faster. Moving faster also means you can take your time to achieve these good grasps,” he said. “We are lucky we have collaborators on our team who are focusing on motion, and we did this nice optimization where we made both the grasp and the motion faster.”

In preliminary tests, the team’s prototype pinch-grasping robot achieved a 10-fold reduction in damage on certain items, such as books, without a loss of speed when compared to robots that use suction.

“They not only showed they could grip a lot of objects, but they did it really fast — they got to 1,000 units per hour,” said Parness, who oversees the project.

The ability to grasp a diversity of items and move them quickly without damage makes pinch-grasping well suited for eventual deployment in an Amazon fulfillment center.

“What’s interesting about e-commerce, as opposed to manufacturing, is it’s much more dynamic,” Parness explained. “It’s a pen, and then it’s a teddy bear, and then it’s a light bulb, and then it’s a t-shirt, and then it’s a book.”

Fulfillment automation

For deployment in an Amazon fulfillment center, a key challenge is to generalize the robot’s item specific manipulation capability to all items available in the Amazon Store, noted Srinivasa.

Related content
By managing and automating many of the steps involved in continual learning, Janus is helping Amazon’s latest robots adapt to a changing environment.

“A majority of the items the robot is going to encounter in production it’s probably never seen before, so it needs to be able to generalize effectively to previously unseen items,” he explained. “Humans do this, too. When we see something novel, we try to map it to the nearest thing that we have encountered before and then try to use that experience from that task and modify it for a new situation.”

Another challenge is to gear the robot so that it can effectively manipulate the vast range of items available in the Amazon Store. For now, the robot uses an off-the-shelf hand to manipulate items that weigh less than two pounds, about half of the items available for purchase.

We can get to the questions that are relevant for the world of robotics in a very data-driven way. Once you have those questions, answering them is a joy. And when you answer them, you know how impactful they can be.
Siddhartha Srinivasa

Going forward, the team will need to design a hand — and associated tools — from scratch that can handle the full range of available items, Erdogan said.

What’s more, while pinch-grasping is superior to suction for some items, suction is better for others, especially flat items such as cards and rulers. A robot optimized for deployment in a fulfillment center may require suction and pinching, along with a machine learning algorithm that’s trained to decide which technique to use for any given situation, Parness said.

“As a person, you pick up a book differently than if you pick up a coin or a t-shirt,” he explained. “We need robots to be intelligent about the items they’re manipulating. If I’m picking up a hammer to hammer a nail in, I want to grasp it in a certain way. But if I’m picking up a hammer to go put it in a box to ship it to you, I want to grasp it in a different way. That’s the future of item intelligence.”

Amazon’s size, scale, and mission enable this level of robotics research, Srinivasa said, and it also enhances the effect it can have in the real world. For example, working within Amazon provides scientists with access to data on current item damage rates and models that show the improvements required to justify the investment in robotics. This provides a focus for his team’s scientists and engineers.

“We can get to the questions that are relevant for the world of robotics in a very data-driven way. Once you have those questions, answering them is a joy,” he said. “And when you answer them, you know how impactful they can be.”

Research areas

Related content

US, WA, Seattle
Have you ever wanted to solve a mystery or be part of solving a case? Are you fascinated by detective stories or crime shows on TV? Do you love to catch bad actors, build ML models and solve complex problems. If so, working on the Loss Prevention Tech team as a Sr Applied Scientist is the place for you! We detect theft, fraud and organized crime happening across our global supply chain and operations for millions of items, for hundreds of product lines worth billions of dollars of inventory world-wide. We foster new game-changing ideas, creating ever more intelligent and self-learning systems to maximize the cost savings of Amazon's inventory losses. The primary role of a Sr Applied Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on all the fraud investigations happening across Amazon operations. Ideal candidates will be a high potential, strategic and analytic graduate with a PhD in ( Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of building fraud detections, detecting organized crime and the ability to use data and research to make changes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Key job responsibilities - Own KPIs that measure fraud management performance and efficiencies. - Detect and automate theft, fraud MOs - Detect organized crime rings and bad actor clusters - Build data or computer vision based ML models - Perform end to end evaluation of operational defects, system gaps, and scaling challenges (both system and operational). - Contribute to the overall fraud management and product development strategies. - Present key learnings and vision to stakeholders and leadership. - Integrate ML detection models via software applications About the team We believe that building a culture that is welcoming and inclusive is integral to people doing their best work and is essential to what we can achieve as a company. We actively recruit people from diverse backgrounds to build a supportive and inclusive workplace. Our team puts a high value on work-live balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, TX, Dallas
Amazon is seeking a highly analytical and skilled Data Scientist to join our OpsTech Infrastructure Engineering (OTIE) team. The vision for our organization is to be the invisible scaffolding to provide Amazon’s network and device infrastructure for Global Operations. We deliver flexible, low-touch, cost-efficient infrastructure products by leveraging data, analytics, and automation to build a highly scalable and accessible network. If you are passionate about working with big data and thrive in a collaborative, innovative environment, we want to hear from you. As a Data Scientist, you will be responsible for data exploration and analyses, as well as AI model development. You will collaborate with data engineers to collect, preprocess, and maintain high-quality datasets. You will dive deep into the available data, identifying trends, patterns, and insights to inform AI initiatives. You will design, develop, and implement AI models, including machine learning and deep learning algorithms, to solve complex business challenges, ensuring that these models are optimized for accuracy, scalability, and real-time performance. You will support the deployment of AI models into production environments, ensuring efficient and reliable operation, and own the model performance monitoring, make improvements, and implement retraining strategies. Strong business and communication skills are essential for collaborating with business owners to develop key business questions and build solutions that provide answers and drive change. Key job responsibilities Thinking Big and generating ideas with the stakeholders. Working with customers and cross-functional stakeholder teams to identify, disambiguate, and define problems. Scoping long-term solutions as a series of smaller, more manageable iterations. Creating data science architectures, and building scalable solutions along with the data engineers. Running simulations, measuring performance, building ML models and designing optimization algorithms. Supporting existing models, while thinking about next generation solutions. Keep up-to-date with the latest AI research, technologies, and industry best practices. Share knowledge and promote AI innovation within the team. We are open to hiring candidates to work out of one of the following locations: Dallas, TX, USA
US, WA, Seattle
The Bad Actor Disincentives (BAD) team is responsible for removing the incentive for Bad Actors while accurately and fairly paying millions of third-party sellers along with disrupting the bad actor flywheel and change the economics of abuse within our store. The team works to ensure that bad actors cannot profit from using our services to abuse customers, selling partners and Amazon. While we obsess over customers, we specialize in obsessing over bad actors to identify their friction points and multiply them exponentially in ways that don’t impact good sellers. Our vision is to ensure Bad Actors do not receive a dollar from selling on Amazon and abusing our policies. If we successfully achieve our vision, then Bad Actors will stop committing misconduct on Amazon. This role requires outstanding technical skills, a deep understanding of machine learning approaches, and a passion for melding ML with great user experience/design. You must have a demonstrated ability for optimizing, developing, launching, and maintaining large-scale production systems. As a key member of the team, you will oversee all aspects of the software lifecycle: design, experimentation, implementation, and testing. You should be willing to dive deep when needed, move rapidly with a bias for action, and get things done. You should have an entrepreneurial spirit, love autonomy, know how to deliver, and long for the opportunity to build pioneering solutions to challenging problems. This role will demand resourcefulness and willingness to learn on both the technical and business side. The challenges we take on can involve a mix of large-scale distributed systems, big data technologies, machine learning science, and require a keen sense of customer obsession and long-term strategic thinking. Key job responsibilities You're a former engineer or scientist who can see the bigger picture. While your career is full of individual wins, it is now more fulfilling when your team is able to build, deliver, and impress. You enjoy leading and mentoring others, and want to work on projects that require innovative and creative thinking alongside deep technical problem solving. You challenge yourself and others to constantly come up with better solutions, and can deliver on a technical roadmap that serves our customers and the business optimally. You communicate clearly, and hold yourself and your team to a high bar. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, VA, Arlington
Amazon's Global Hiring Science team ensures we match the right people to the right roles, quickly, fairly, and with an amazing experience. To achieve this, we design, implement, and optimize hiring systems experienced by millions of candidates annually. We work in a data-rich, global environment solving complex problems with deep thought, large-sample research, and advanced quantitative methods to deliver practical solutions that make all aspects of hiring more fair, accurate, efficient, and enjoyable. Key job responsibilities We’re developing a new approach to hiring via a multi-year initiative to evolve how we define jobs and candidate qualifications, how we recommend and promote jobs to candidates, and how we help candidates find the roles in which they will be most successful, satisfied, and engaged. To accomplish this, we’ve created a specialized team of experienced industrial-organizational psychologists, applied scientists, engineers, and UX designers. We're looking for an experienced senior research science manager to lead a team of scientists working on this initiative who is equal parts researcher, consultant, and thought leader, with strong expertise in psychometrics, research methodology, and data analysis. In this role, you will collaborate with cross-functional teams to drive research, development, and implementation of innovative hiring technology, evaluation tools, approaches, and methods. The impact of your work will be global and applicable across all of Amazon’s businesses (e.g., AWS, Retail, Logistics, Kindle, and Business Development) and roles (e.g., hourly, technical, professional). A day in the life What you’ll do: • Manage the development and execution of large-scale, highly-visible global research, validation, and hiring optimization projects. • Solve complex, ambiguous measurement, legal defensibility, and experimental design challenges. • Lead the development and research of new content and approaches to assessment (e.g., high fidelity simulation, interactive item types, constructed response). • Apply the scientific method to answer novel research questions. • Influence executive project sponsors and stakeholders across the company. • Drive effective teamwork, communication, collaboration, and commitment across cross-functional groups with competing priorities. • Oversee complex statistical/quantitative analyses with large datasets. About the team We are a team of scientists, and this is an important part of our professional identities. We take our continuing education as well as our contributions to the continuing education of others seriously. To this end, we regularly look for opportunities to engage in reading groups with our peers, present at internal and external conferences, publish our work, and engage in other professional activities in support of our or others development. Learn more about being a scientist at Amazon: https://www.amazon.science. We embrace differences and are committed to furthering our culture of inclusion. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Seattle, WA, USA
US, WA, Seattle
Are you interested in working with top talent in Optimization, Operations Research and Supply Chain to help Amazon to efficiently match our Devices with worldwide customers? We have challenging problems and need your innovative solutions to make tremendous financial impacts! The Amazon Devices Science team is looking for a Research Scientist with background in Operations Research, Optimization, Supply Chain and/or Simulation to support science efforts to integrate across inventory management functionalities. Our team is responsible for science models (both deterministic and stochastic) that power world-wide inventory allocation for Amazon Devices business that includes Echo, Kindle, Fire Tablets, Amazon TVs, Amazon Fire TV sticks, Ring, and other smart home devices. We formulate and solve challenging large-scale financially-based optimization problems which ingest demand forecasts and produce optimal procurement, production, distribution, and inventory management plans. In addition, we also work closely with demand forecasting, material procurement, production planning, finance, and logistics teams to co-optimize the inventory management and supply chain for Amazon Devices given operational constraints. Key job responsibilities The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail, and ability to work in a fast-paced and ever-changing environment and a desire to help shape the overall business. Job responsibilities include: - Design and develop advanced mathematical, simulation, and optimization models and apply them to define strategic and tactical needs and drive appropriate business and technical solutions in the areas of inventory management and distribution, network flow, supply chain optimization, and demand planning - Apply mathematical optimization techniques (linear, quadratic, SOCP, robust, stochastic, dynamic, mixed-integer programming, network flows, nonlinear, nonconvex programming) and algorithms to design optimal or near optimal solution methodologies to be used by in-house decision support tools and software - Research, prototype and experiment with these models by using modeling languages such as Python; participate in the production level deployment - Create, enhance, and maintain technical documentation, and present to other Scientists, Product, and Engineering teams - Support project plans from a scientific perspective by managing product features, technical risks, milestones and launch plans - Influence organization's long-term roadmap and resourcing, and onboard new technologies onto the Science team's toolbox We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Are you passionate about solving unique customer-facing problem in the Amazon scale? Are you excited by developing and productizing machine learning, deep learning algorithms and leverage tons of Amazon data to learn and infer customer shopping patterns? Do you enjoy working with a diversity of engineers, machine learning scientists, product managers and user-experience designers? If so, you have found the right match! Fashion is extremely fast-moving, visual, subjective, and it presents numerous unique problem domains such as product recommendations, product discovery and evaluation. The vision for Amazon Fashion is to make Amazon the number one online shopping destination for Fashion customers by providing large selections, inspiring and accurate recommendations and customer experience. The mission of Fit science team as part of Fashion Tech is to innovate and develop scalable ML solutions to provide personalized fit and size recommendation when Amazon Fashion customers evaluate apparels or shoes online. The team is hiring Applied Scientist who has a solid background in applied Machine Learning and a proven record of solving customer-facing problems via scalable ML solutions, and is motivated to grow professionally as an ML scientist. Key job responsibilities Tackle ambiguous problems in Machine Learning and drive full life-cycle Machine Learning projects. Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production. Run A/B experiments, gather data, and perform statistical tests. Establish scalable, efficient, automated processes for large-scale data mining, machine-learning model development, model validation and serving. Work closely with software engineers and product managers to assist in productizing your ML models. We are open to hiring candidates to work out of one of the following locations: San Diego, CA, USA | San Francisco, CA, USA | Santa Monica, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, MA, North Reading
Are you excited about developing generative AI and foundation models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for scientists, engineers and program managers for a variety of roles. The Research team at Amazon Robotics is seeking a passionate, hands-on Sr. Applied Scientist to help create the world’s first foundation model for a many-robot system. The focus of this position is how to predict the future state of our warehouses that feature a thousand or more mobile robots in constant motion making deliveries around the building. It includes designing, training, and deploying large-scale models using data from hundreds of warehouses under different operating conditions. This work spans from research such as alternative state representations of the many-robot system for training, to experimenting using simulation tools, to running large-scale A/B tests on robots in our facilities. Key job responsibilities * Research vision - Where should we be focusing our efforts * Research delivery - Proving/dis-proving strategies in offline data or in simulation * Production studies - Insights from production data or ad-hoc experimentation * Production implementation - Building key parts of deployed algorithms or models About the team You would join our multi-disciplinary science team that includes scientists with backgrounds in planning and scheduling, grasping and manipulation, machine learning, and operations research. We develop novel planning algorithms and machine learning methods and apply them to real-word robotic warehouses, including: - Planning and coordinating the paths of thousands of robots - Dynamic allocation and scheduling of tasks to thousands of robots - Learning how to adapt system behavior to varying operating conditions - Co-design of robotic logistics processes and the algorithms to optimize them Our team also serves as a hub to foster innovation and support scientists across Amazon Robotics. We also coordinate research engagements with academia, such as the Robotics section of the Amazon Research Awards. We are open to hiring candidates to work out of one of the following locations: North Reading, MA, USA | Westborough, MA, USA
US, WA, Bellevue
Inventory Planning and Control (IPC) is seeking an experienced senior data scientist to join its central science team. Our team owns the core decision models in the space of Buying, Placement, and Capacity Control. Our models decide when, where, and how much we should buy, flow, and hold inventories in our global fulfillment network to meet Amazon’s business goals and to make our customers happy. We do this for hundreds of millions of items and hundreds of product lines worth billions of dollars of world-wide for both our Retail and third-party seller business. Our systems are built entirely in-house, for which we constantly develop new technologies in automated inventory planning, prediction, optimization and simulation. Our systems operate at various scales, from real-time decision system that completes thousands of transactions per seconds, to large scale distributed system that optimizes the inventory decisions over millions of products simultaneously. IPC is also unique in that we are simultaneously developing the science and software of inventory optimization and solving some of the toughest computational/operational challenges in production. Our team members have an opportunity to be on the forefront of supply chain thought leadership by working on some of the most difficult problems in the industry with some of the best product managers, scientists, and software engineers in the industry. Key job responsibilities Candidates will be responsible for developing causal, machine learning and data driven models to enhance the various inventory optimization engines that the team owns. The successful candidate should have solid hands-on experience in applying machine learning or causal inference models. They will also be responsible for conducting data driven analysis to facilitate strategic decisions. They require superior logical thinkers who are able to quickly approach large ambiguous problems and develop a practical plan to tackle. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving. They are able to measure and estimate risks, and constructively critique peer research. As a senior scientist, you will also help coach/mentor junior scientists in the team. A day in the life The IPC science team contains a large group of scientists with different technical expertise, who will help and collaborate with you on your projects. In this role, you will also work with our internal customers from the Retail, third-party seller and operations departments worldwide. You will understand their challenges and pain points, and help develop data driven solutions that improve how Amazon manages inventory in our global supply chain. You will work closely with the product managers, engineers and other scientists to turn science proposals into production implementation. About the team We are a team of scientists, product managers and engineers focusing on innovation. We promote experimentation and learn by building. We often tackle the hardest problem in the organization and work cross-functionally. We are at the center of developing inventory solutions to support the rapid growth of Amazon's store business. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, time-series forecasting, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the cutting-edge of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, time-series, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep-training in one area of econometrics. For example, many applications on the team use structural econometrics, machine-learning, and time-series forecasting. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members. Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status. For individuals with disabilities who would like to request an accommodation, visit https://www.amazon.jobs/en/disability/us We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Chicago, IL, USA | Seattle, WA, USA
US, NY, New York
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Books Advertising team owns the worldwide advertising business for books, including advertiser and shopper experiences. They develop long-term vision and drive improvements for category relevance, auction dynamics, and ad serving. Additionally, they drive advertiser engagement, represent advertisers' voice, and provide operational support for our programs. This means the team owns all book-specific experiences for Sponsored Products, Sponsored Brands, Sponsored Display, Lock Screen Advertising, the Ads Console, and the Public API. As an Senior Applied Scientist on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE ** Candidates can be based within proximity of NYC, Seattle, Toronto, Arlington County/Virginia (HQ2), or Santa Monica ** We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | New York, NY, USA | Santa Monica, CA, USA