An overhead shot shows the Robin robot arm lifting a package via suction cups
Amazon Robotics researchers created a new learning system called Janus, which provides a robust framework for retraining Robin robotic arms and represents a major step toward development of a continual learning platform that will help Amazon retrain all its robots in the future.

Amazon’s Janus framework lifts continual learning to the next level

By managing and automating many of the steps involved in continual learning, Janus is helping Amazon’s latest robots adapt to a changing environment.

Watching items move down a conveyor belt toward a Robin robot arm at an Amazon fulfillment center is a great place to learn about the role continual learning plays in robotics.

The packages Robin encounters can include boxes, cylinders, and padded mailers of different shapes, sizes, and colors. Each group is different. Robin’s computer-vision system must make sense of them all by segmenting those packages into individual elements.

Related content
An advanced perception system, which detects and learns from its own mistakes, enables Robin robots to select individual objects from jumbled packages — at production scale.

This is something a child can do instinctively. But it took months of training for the Robin robotic arm to distinguish among the different package types.

The types of packages we ship and the distribution of these packages changes frequently. Our models need to adapt to these changes while maintaining high performance. To do this, we require continual learning.
Cassie Meeker

Scientists initially trained Robin to identify the different packages utilizing supervised learning, which graded the vision system’s accuracy as it tried to segment piles of packages from tens of thousands of images. Eventually, the system’s accuracy improved to the point where the robotics arms could be deployed in Amazon fulfillment centers.

Yet, there was a catch — the packages that Amazon delivers arrive in a constantly shifting variety of shapes and sizes.

“The problem with machine learning is that models must adapt to continually changing data conditions,” says Cassie Meeker, an Amazon Robotics applied scientist who is an expert user of Amazon’s continuous learning system. “Amazon is a global company — the types of packages we ship and the distribution of these packages changes frequently. Our models need to adapt to these changes while maintaining high performance. To do this, we require continual learning.”

To get there, Meeker’s team created a new learning system—a framework powerful and smart enough to adapt to distribution shifts in real time.

The framework, called Janus, automates some aspects of the retraining process. Named after the Roman god of transitions, Janus provides a robust framework for retraining Robin robotic arms and represents a major step toward development of a continual learning platform that will help Amazon retrain all its robots in the future.

A complex challenge

The concept of continual learning appears deceptively simple, says Hank Chen, an Amazon machine learning engineer who has worked on Janus since its inception. Robin, whose accuracy generally tops 99%, encounters some unexpected packaging. Then, via continual learning, it adapts to account for that. But the challenge is far more complex than that.

The first hurdle involves deciding which anomalous events require retraining. Chen breaks these into two different classes. The first involves the robot’s environment. Perhaps a light failed and it is too dark to identify packages or maybe a camera was knocked out of focus. These types of anomalies are fairly easy to identify and technicians can usually fix them quickly.

Robin sorts packages

The second type of anomaly is informational.

“These events happen when something changes,” Chen says. “We might have a new package type, holiday art on packages, or a hot new toy with transparent packaging. Recently, our European fulfillment centers began using black bags and that threw Robin for a loop. These are the types of novel data we want to learn from and model.”

Amazon trains its models on images featuring those packages. Once they are identified, the continual learning team annotates the novel images. This involves labeling the location, boundaries, shape, and classification of the packages in the scene.

When the team gathers enough annotated images, it can begin to retrain Robin’s models with fresh data, maintaining and even improving Robin’s ability to recognize both known and new packages.

Efficiently training models, however, requires a wide variety of examples.

“When we get a good initial raw image, we do what is called augmentation,” explains Larry Li, a software development manager who manages the Janus team. “We shrink the image, flip it, rotate it, make it darker or brighter, discolor it, make it blurry, and juxtapose with other images. This multiplies every image many times, giving the large number of images we need to train our model.”

Related content
Amazon fulfillment centers use thousands of mobile robots. To keep products moving, Amazon Robotics researchers have crafted unique solutions.

To ensure that new data does not reduce the accuracy of existing models, Amazon tests retrained models on historical data to see if the machine retains — or, better still, improves — its level of performance. If the model succeeds, it moves to live testing.

This takes place on a special station set up for testing prototype robots. Researchers create piles of test packages to ensure the robot can handle them all. If it can, they beta test it on one or two lines within the company’s fulfillment centers. Only after a robot proves its performance does Amazon deploy it more broadly.

Automating processes

Simultaneously capturing novel events, categorizing them based on recurrence, annotating images, creating training decks, and performing model training is a lot to manage — Janus has been designed to automate these processes.

“We want to automate how we retrain our models in response to changing conditions and new data,” Meeker says.

Janus, for example, automatically monitors when robots such as Robin encounter novel events.

“If a human was uncertain about something, they could tell us what caused that confusion,” Meeker notes. “But a robot can’t tell us what the problem was. Instead, we have to use other metrics to figure out when and why a model is not confident.

Robin's advanced perception system

“When presented with a cluttered scene, for example, Robin’s model will segment the scene into individual packages — each box, padded mailer, et cetera is individually labeled and the package boundaries are marked. If the robot fails to pick up the package, drops the package, or picks up a different package, we can look at how the model segmented the scene to identify the problem.”

Janus automatically identifies problematic packages for annotation. Those annotations make it easier to identify and rank the packages most likely to cause Robin challenges.

Performing these tasks in real time is computationally intensive. At the same time, Amazon’s fleet of Robin robots is growing. To minimize computing overhead, continual learning relies on Amazon Web Services to tap functions from the cloud on an as-needed basis.

Related content
Scientists and engineers are developing a new generation of simulation tools accurate enough to develop and test robots virtually.

“We leverage AWS components to create an ‘assembly line’ for computer learning,” Li says. “We also use a novel image detector to detect significant changes in our targets and environment. When those conditions happen, it triggers a batch job to sample the raw images and preserve them for potential retraining.”

Reinforcement learning

Ultimately, Chen says, the continual learning team wants to transform Janus from a set of code libraries into an integrated service that any user could pull off the shelf and plug into their robot.

“Once they have the model, it would look for anomalies, pick out the most frequent novel events, and learn from them,” he says.

Humans, for example, might move a pile of packages around to pick one up, but how do we capture that capability with a robot and not slow down the line? Reinforcement learning might give us a way to do this.
Larry Li

Janus may also evolve to embrace reinforcement learning.

“In reinforcement learning, it is up to the model to explore the possibilities and find the proper solution,” Li explains. “The results are markedly different than supervised learning because there is a closer coupling between perception and action. The actions a robot takes can be used to generate best outcomes. Humans, for example, might move a pile of packages around to pick one up, but how do we capture that capability with a robot and not slow down the line? Reinforcement learning might give us a way to do this.”

Related content
Zoox principal software engineer Olivier Toupet on company’s autonomous robotaxi technology

Robin’s ability to interpret images is already very good, Meeker says. Her group now wants to extend those capabilities to other robots.

“We want to create universal models that can segment packages with less training data,” Meeker explains. “We do this by pre-training a model with a large dataset collected from across different environments, different tasks and different backgrounds. Then we fine tune the model with small amounts of data from a new environment. With a relatively small amount of data, you can get high segmentation performance. A continuous learning framework like Janus allows us to scale our universal model, so we can train across many different tasks and environments.”

Related content

US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
LU, Luxembourg
Are you a talented and inventive scientist with a strong passion about modern data technologies and interested to improve business processes, extracting value from the data? Would you like to be a part of an organization that is aiming to use self-learning technology to process data in order to support the management of the procurement function? The Global Procurement Technology, as a part of Global Procurement Operations, is seeking a skilled Data Scientist to help build its future data intelligence in business ecosystem, working with large distributed systems of data and providing Machine Learning (ML) and Predictive Modeling expertise. You will be a member of the Data Engineering and ML Team, joining a fast-growing global organization, with a great vision to transform the Procurement field, and become the role model in the market. This team plays a strategic role supporting the core Procurement business domains as well as it is the cornerstone of any transformation and innovation initiative. Our mission is to provide a high-quality data environment to facilitate process optimization and business digitalization, on a global scale. We are supporting business initiatives, including but not limited to, strategic supplier sourcing (e.g. contracting, negotiation, spend analysis, market research, etc.), order management, supplier performance, etc. We are seeking an individual who can thrive in a fast-paced work environment, be collaborative and share knowledge and experience with his colleagues. You are expected to deliver results, but at the same time have fun with your teammates and enjoy working in the company. In Amazon, you will find all the resources required to learn new skills, grow your career, and become a better professional. You will connect with world leaders in your field and you will be tackling Data Science challenges to ensure business continuity, by taking the right decisions for your customers. As a Data Scientist in the team, you will: -be the subject matter expert to support team strategies that will take Global Procurement Operations towards world-class predictive maintenance practices and processes, driving more effective procurement functions, e.g. supplier segmentation, negotiations, shipping supplies volume forecast, spend management, etc. -have strong analytical skills and excel in the design, creation, management, and enterprise use of large data sets, combining raw data from different sources -provide technical expertise to support the development of ML models to facilitate intelligent digital services, such as Contract Lifecycle Management (CLM) and Negotiations platform -cooperate closely with different groups of stakeholders, e.g. data/software engineers, product/program managers, analysts, senior leadership, etc. to evaluate business needs and objectives to set up the best data management environment -create and share with audiences of varying levels technical papers and presentations -deal with ambiguity, prioritizing needs, and delivering results in a dynamic environment Basic qualifications -Master’s Degree in Computer Science/Engineering, Informatics, Mathematics, or a related technical discipline -3+ years of industry experience in data engineering/science, business intelligence or related field -3+ years experience in algorithm design, engineering and implementation for very-large scale applications to solve real problems -Very good knowledge of data modeling and evaluation -Very good understanding of regression modeling, forecasting techniques, time series analysis, machine-learning concepts such as supervised and unsupervised learning, classification, random forest, etc. -SQL and query performance tuning skills Preferred qualifications -2+ years of proficiency in using R, Python, Scala, Java or any modern language for data processing and statistical analysis -Experience with various RDBMS, such as PostgreSQL, MS SQL Server, MySQL, etc. -Experience architecting Big Data and ML solutions with AWS products (Redshift, DynamoDB, Lambda, S3, EMR, SageMaker, Lex, Kendra, Forecast etc.) -Experience articulating business questions and using quantitative techniques to arrive at a solution using available data -Experience with agile/scrum methodologies and its benefits of managing projects efficiently and delivering results iteratively -Excellent written and verbal communication skills including data visualization, especially in regards to quantitative topics discussed with non-technical colleagues
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, WA, Seattle
Amazon is seeking an experienced, self-directed data scientist to support the research and analytical needs of Amazon Web Services' Sales teams. This is a unique opportunity to invent new ways of leveraging our large, complex data streams to automate sales efforts and to accelerate our customers' journey to the cloud. This is a high-visibility role with significant impact potential. You, as the right candidate, are adept at executing every stage of the machine learning development life cycle in a business setting; from initial requirements gathering to through final model deployment, including adoption measurement and improvement. You will be working with large volumes of structured and unstructured data spread across multiple databases and can design and implement data pipelines to clean and merge these data for research and modeling. Beyond mathematical understanding, you have a deep intuition for machine learning algorithms that allows you to translate business problems into the right machine learning, data science, and/or statistical solutions. You’re able to pick up and grasp new research and identify applications or extensions within the team. You’re talented at communicating your results clearly to business owners in concise, non-technical language. Key job responsibilities • Work with a team of analytics & insights leads, data scientists and engineers to define business problems. • Research, develop, and deliver machine learning & statistical solutions in close partnership with end users, other science and engineering teams, and business stakeholders. • Use AWS services like SageMaker to deploy scalable ML models in the cloud. • Examples of projects include modeling usage of AWS services to optimize sales planning, recommending sales plays based on historical patterns, and building a sales-facing alert system using anomaly detection.
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables
US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.