An overhead shot shows the Robin robot arm lifting a package via suction cups
Amazon Robotics researchers created a new learning system called Janus, which provides a robust framework for retraining Robin robotic arms and represents a major step toward development of a continual learning platform that will help Amazon retrain all its robots in the future.

Amazon’s Janus framework lifts continual learning to the next level

By managing and automating many of the steps involved in continual learning, Janus is helping Amazon’s latest robots adapt to a changing environment.

Watching items move down a conveyor belt toward a Robin robot arm at an Amazon fulfillment center is a great place to learn about the role continual learning plays in robotics.

The packages Robin encounters can include boxes, cylinders, and padded mailers of different shapes, sizes, and colors. Each group is different. Robin’s computer-vision system must make sense of them all by segmenting those packages into individual elements.

Related content
An advanced perception system, which detects and learns from its own mistakes, enables Robin robots to select individual objects from jumbled packages — at production scale.

This is something a child can do instinctively. But it took months of training for the Robin robotic arm to distinguish among the different package types.

The types of packages we ship and the distribution of these packages changes frequently. Our models need to adapt to these changes while maintaining high performance. To do this, we require continual learning.
Cassie Meeker

Scientists initially trained Robin to identify the different packages utilizing supervised learning, which graded the vision system’s accuracy as it tried to segment piles of packages from tens of thousands of images. Eventually, the system’s accuracy improved to the point where the robotics arms could be deployed in Amazon fulfillment centers.

Yet, there was a catch — the packages that Amazon delivers arrive in a constantly shifting variety of shapes and sizes.

“The problem with machine learning is that models must adapt to continually changing data conditions,” says Cassie Meeker, an Amazon Robotics applied scientist who is an expert user of Amazon’s continuous learning system. “Amazon is a global company — the types of packages we ship and the distribution of these packages changes frequently. Our models need to adapt to these changes while maintaining high performance. To do this, we require continual learning.”

To get there, Meeker’s team created a new learning system—a framework powerful and smart enough to adapt to distribution shifts in real time.

The framework, called Janus, automates some aspects of the retraining process. Named after the Roman god of transitions, Janus provides a robust framework for retraining Robin robotic arms and represents a major step toward development of a continual learning platform that will help Amazon retrain all its robots in the future.

A complex challenge

The concept of continual learning appears deceptively simple, says Hank Chen, an Amazon machine learning engineer who has worked on Janus since its inception. Robin, whose accuracy generally tops 99%, encounters some unexpected packaging. Then, via continual learning, it adapts to account for that. But the challenge is far more complex than that.

The first hurdle involves deciding which anomalous events require retraining. Chen breaks these into two different classes. The first involves the robot’s environment. Perhaps a light failed and it is too dark to identify packages or maybe a camera was knocked out of focus. These types of anomalies are fairly easy to identify and technicians can usually fix them quickly.

Robin sorts packages

The second type of anomaly is informational.

“These events happen when something changes,” Chen says. “We might have a new package type, holiday art on packages, or a hot new toy with transparent packaging. Recently, our European fulfillment centers began using black bags and that threw Robin for a loop. These are the types of novel data we want to learn from and model.”

Amazon trains its models on images featuring those packages. Once they are identified, the continual learning team annotates the novel images. This involves labeling the location, boundaries, shape, and classification of the packages in the scene.

When the team gathers enough annotated images, it can begin to retrain Robin’s models with fresh data, maintaining and even improving Robin’s ability to recognize both known and new packages.

Efficiently training models, however, requires a wide variety of examples.

“When we get a good initial raw image, we do what is called augmentation,” explains Larry Li, a software development manager who manages the Janus team. “We shrink the image, flip it, rotate it, make it darker or brighter, discolor it, make it blurry, and juxtapose with other images. This multiplies every image many times, giving the large number of images we need to train our model.”

Related content
Amazon fulfillment centers use thousands of mobile robots. To keep products moving, Amazon Robotics researchers have crafted unique solutions.

To ensure that new data does not reduce the accuracy of existing models, Amazon tests retrained models on historical data to see if the machine retains — or, better still, improves — its level of performance. If the model succeeds, it moves to live testing.

This takes place on a special station set up for testing prototype robots. Researchers create piles of test packages to ensure the robot can handle them all. If it can, they beta test it on one or two lines within the company’s fulfillment centers. Only after a robot proves its performance does Amazon deploy it more broadly.

Automating processes

Simultaneously capturing novel events, categorizing them based on recurrence, annotating images, creating training decks, and performing model training is a lot to manage — Janus has been designed to automate these processes.

“We want to automate how we retrain our models in response to changing conditions and new data,” Meeker says.

Janus, for example, automatically monitors when robots such as Robin encounter novel events.

“If a human was uncertain about something, they could tell us what caused that confusion,” Meeker notes. “But a robot can’t tell us what the problem was. Instead, we have to use other metrics to figure out when and why a model is not confident.

Robin's advanced perception system

“When presented with a cluttered scene, for example, Robin’s model will segment the scene into individual packages — each box, padded mailer, et cetera is individually labeled and the package boundaries are marked. If the robot fails to pick up the package, drops the package, or picks up a different package, we can look at how the model segmented the scene to identify the problem.”

Janus automatically identifies problematic packages for annotation. Those annotations make it easier to identify and rank the packages most likely to cause Robin challenges.

Performing these tasks in real time is computationally intensive. At the same time, Amazon’s fleet of Robin robots is growing. To minimize computing overhead, continual learning relies on Amazon Web Services to tap functions from the cloud on an as-needed basis.

Related content
Scientists and engineers are developing a new generation of simulation tools accurate enough to develop and test robots virtually.

“We leverage AWS components to create an ‘assembly line’ for computer learning,” Li says. “We also use a novel image detector to detect significant changes in our targets and environment. When those conditions happen, it triggers a batch job to sample the raw images and preserve them for potential retraining.”

Reinforcement learning

Ultimately, Chen says, the continual learning team wants to transform Janus from a set of code libraries into an integrated service that any user could pull off the shelf and plug into their robot.

“Once they have the model, it would look for anomalies, pick out the most frequent novel events, and learn from them,” he says.

Humans, for example, might move a pile of packages around to pick one up, but how do we capture that capability with a robot and not slow down the line? Reinforcement learning might give us a way to do this.
Larry Li

Janus may also evolve to embrace reinforcement learning.

“In reinforcement learning, it is up to the model to explore the possibilities and find the proper solution,” Li explains. “The results are markedly different than supervised learning because there is a closer coupling between perception and action. The actions a robot takes can be used to generate best outcomes. Humans, for example, might move a pile of packages around to pick one up, but how do we capture that capability with a robot and not slow down the line? Reinforcement learning might give us a way to do this.”

Related content
Zoox principal software engineer Olivier Toupet on company’s autonomous robotaxi technology

Robin’s ability to interpret images is already very good, Meeker says. Her group now wants to extend those capabilities to other robots.

“We want to create universal models that can segment packages with less training data,” Meeker explains. “We do this by pre-training a model with a large dataset collected from across different environments, different tasks and different backgrounds. Then we fine tune the model with small amounts of data from a new environment. With a relatively small amount of data, you can get high segmentation performance. A continuous learning framework like Janus allows us to scale our universal model, so we can train across many different tasks and environments.”

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.