History of SCOT lead image.jpg
In a little over a decade, Amazon’s Supply Chain Optimization Technologies team (SCOT) has built one of the largest and most sophisticated automated decision-making systems in the world.

Solving some of the largest, most complex operations problems

How Amazon’s Supply Chain Optimization Technologies team has evolved over time to meet a challenge of staggering complexity.

Amazon’s ability to grow to an unprecedented scale, while simultaneously meeting the growing expectations of its customers, particularly around delivery speeds, is a success story on many levels.

One of the keys to that success is a team that is fundamental to Amazon’s increasingly rapid transformation. A largely unsung team that in little more than a decade has built one of the largest and most sophisticated automated decision-making systems in the world. A team that has harnessed simulation, mathematical optimization, and machine learning to create the capability to deliver products at speeds once thought impossible at the mass market scale — in some cases within 2 hours — across a fulfillment network of dizzying complexity.

This is Amazon’s Supply Chain Optimization Technologies team (SCOT). If the Amazon Store were a human body, think of SCOT as its nervous system: essential to life, quietly acting in the background to automatically optimize critical functions and flows.

“At SCOT, using science and technology to optimize the supply chain is not just an enabler, it's our core focus,” says Ashish Agiwal, vice president, Fulfillment Optimization.

Today, SCOT’s systems have end-to-end responsibility for orchestrating Amazon Store’s supply chain.

SCOT is responsible for computing the delivery promises Amazon Store customers see when ordering, forecasting demand for its hundreds of millions of products, deciding which products to stock and in what quantities, allocating stock to warehouses and fulfillment centers (FCs) in anticipation of regional customer needs, offering markdown pricing when necessary, working out how to consolidate customer orders for maximum efficiency, coordinating inbound and inventory management from millions of sellers worldwide, and so much more.

But it was not always thus. Far from it, says Deepak Bhatia, vice president of SCOT, whose team’s methodologies and mechanisms will be a topic of conversation at INFORMS, the world’s largest operations research and analytics conference, taking place next week in Indianapolis, Indiana.

“A very different world”

In 2011 when Bhatia joined Amazon, the team that would evolve into SCOT was much smaller, he recalls, and its main concern was trying to automate Amazon’s product buying and inventory management.

“It was a very different world. The notion of an end-to-end supply chain tech function wasn’t there. But there were powerful intellects and a lot of energy in that team.”

It was a huge deal. Will it improve things, and if so by how much? Will it completely break? In the beginning, we took baby steps. We made changes one product category at a time.
Deepak Bhatia

In 2011, Amazon’s total revenue reached nearly $48 billion, and it was already clear to the senior leadership that the company’s scale would require the automation of buying and the management of inventory; monitoring spreadsheets was not a long-term solution. Indeed, even then the sheer range of products offered by Amazon meant the “illusion of control” was already kicking in among the groups managing inventory, says Bhatia. In fact, Bhatia notes, the sheer complexity and scale meant the challenge was beyond the scope of any team, let alone an individual.

In response, Bhatia and his colleagues set out to develop complex algorithms that could make buying and inventory placement decisions for a given category of products. And while that was all well and good in theory, trying it for real was a watershed moment.

“It was a huge deal. Will it improve things, and if so by how much? Will it completely break? In the beginning, we took baby steps. We made changes one product category at a time.”

Media category products were the early adopters. In randomized, controlled trials that ran over several months, some of these products were managed in the traditional way, and some by the new algorithms. Crucially, human judgement could still override the system’s decisions if deemed necessary.

The trial went well — the algorithms’ decisions were overridden only a small percentage of the time — and the approach was expanded across additional categories, including consumables such as groceries.

Going all in

“Then one day, in a high-level meeting someone said: ‘What if we go all in and make these categories 100% automated?’, Bhatia recalls. “Someone responded ‘All hell will break loose’.” And that, Bhatia notes, is where Amazon’s comfort with risk-taking came into play. “They decided to go all in.” That was around 2014. And the systems worked as designed, improving customer experience outcomes like in-stock rates while reducing costs.

One day, in a high-level meeting someone said: ‘What if we go all in and make these categories 100% automated?’ Someone responded ‘All hell will break loose’.
Deepak Bhatia

“After this success, automating one product category at a time started to feel too risk-averse,” says Bhatia.

Over the next few years, the technology was rapidly rolled out across the retail business, all the while being iterated and improved upon, with increasing success in terms of efficiency and customer satisfaction. At the same time, the rapidly growing SCOT team was developing technologies that would enable them to join the dots from one end of the Amazon supply chain to the other.

For example, SCOT grew its own demand forecasting team, with a sharp focus on scientific and technological innovation. The forecasting aspect of SCOT’s work started out as a patchwork of models, which evolved eventually to deep learning approaches to decide what features of the retail data were most important.

Related content
The story of a decade-plus long journey toward a unified forecasting model.

Today, building on a 2018 in-house research breakthrough, the forecasting team is using a single model that learns business-critical demand patterns without even being told what to look for. Called the Multi-Horizon Quantile Recurrent Forecaster, the model can accurately forecast shifting seasonal demand, future planned-event demand spikes and even “cold-start forecasting” for products with limited sales history.

Forecast accuracy is particularly important at Amazon’s scale.

“SCOT is directing hundreds of billions of dollars of product flows. That means just a few percentage points of change in our topline predictions equates to several fulfillment centers worth of products,” says Salal Humair, a SCOT vice president and Amazon distinguished scientist.

As SCOT’s demand forecasting has improved, so too has its ability to ensure that products were best positioned to fulfill those anticipated customer orders.

The challenge of One-Day Delivery

While Amazon’s largely manual inventory management system became increasingly automated in the early part of the previous decade, those changes proved insufficient for the logistical challenges that lay ahead: Amazon’s ever more ambitious customer-delivery promises, particularly its One-Day Delivery promise in the US in 2019, and Prime Now, Amazon's 2-hour grocery businesses.

“Before we announced the One-Day Delivery promise, a detailed SCOT simulation called Mechanical Sensei was the key to figuring out how much additional inventory we would need, where it would be placed, and how that would affect shipping costs,” says Humair.

So, at a time when Amazon was continuing to expand globally, the company’s bold delivery promises meant there was a pressing need to locate products closer to Amazon customers. This meant a significant increase in local distribution facilities, and yet another challenge: which items should be locally placed?

“Most of our systems were designed to operate under the simplifying assumption that demand for each item sold on the website is independent, but we know that’s not the case in reality,” says Jeffrey Maurer, vice president, Inventory Planning and Control. “When one product goes out of stock, or isn’t available for fast delivery, demand shifts to other products. We can’t make every product locally available in every location, so how do we account for these constraints while trying to maximize customer satisfaction?”

That nut has yet to be comprehensively cracked, but the simple fact of adding local warehousing resulted in a supply chain network of such layered complexity, that the SCOT team realized its automated network would need yet another radical redesign.

From left to right, Ashish Agiwal, vice president, Fulfillment Optimization; Deepak Bhatia, vice president of SCOT; Salal Humair, a SCOT vice president and Amazon distinguished scientist; Jeffrey Maurer, vice president, Inventory Planning and Control; and Piyush Saraogi, vice president, Fulfillment By Amazon.
From left to right, Ashish Agiwal, vice president, Fulfillment Optimization; Deepak Bhatia, vice president of SCOT; Salal Humair, a SCOT vice president and Amazon distinguished scientist; Jeffrey Maurer, vice president, Inventory Planning and Control; and Piyush Saraogi, vice president, Fulfillment By Amazon.

It took them several years to solve for the new set of challenges.

“We had to iterate, fail, iterate, fail, iterate, fail many times,” Humair recalls.

Then, in 2020, the team unveiled its latest breakthrough: the “multi-echelon system”. This is a multi-product, multi-layered, multi-fulfillment center model for optimizing inventory levels for varying delivery speeds in a space where future demand, product lead times and capacity constraints are all uncertain, and where real-time customer promises and fulfillment make the demand patterns seen by FCs very hard to characterize.

“We have a strong sense of pride for the work the SCOT team is doing,” says Bhatia. “These sorts of solutions are just unheard of in academia and industry.”

The SCOT team was able to demonstrate significant improvements to inventory buying and placement through the multi-echelon system, but rolling it out across the business was a challenge.

“Not only did the teams, systems and coordination mechanisms all need to be rebuilt, but we also had to keep the business running,” says Humair. “We had to change the engine while still flying the plane!”

Related content
The SCOT science team used lessons from the past — and improved existing tools — to contend with “a peak that lasted two years”.

And then there was COVID. “The impact of COVID on our supply chain brought capacity management to the forefront,” says Maurer. “It was no longer enough to be approximately right at network level in terms of capacity management; we needed to get it exactly right at every facility and connection in our network.”

Ultimately, the successful combination of powerful forecasting, multi-echelon inventory management‚ and several other algorithms and systems — running the gamut from fulfillment to customer promise, inventory health, and inventory placement — along with unparalleled distribution capacity enabled Amazon to deal with the effects of COVID as well as the enormous surges in demand created by shopping events such as Cyber Monday and Amazon’s own Prime Day. The latter, this year, resulted in the record-breaking purchase of more than 300 million items across more than 20 countries.

Future challenges

So what are the current and future challenges in SCOT’s sights?

“The range of problems requiring disruptive technology solutions is not exhausted,” Humair notes.

For example, about 60% of the Amazon Store’s sales is through Fulfillment by Amazon (FBA), a service for small-and-medium sized businesses to provide unique selection for Amazon customers at low costs and fast speeds.

Optimizing supply chain efficiency would be hard enough at Amazon’s scale, even if Amazon was in full control of every aspect of its fulfillment network. “However we work with millions of FBA sellers with different cost structures and inventory management practices who independently decide what to sell, how much to inbound, and how to price their products,” notes Piyush Saraogi, vice president, FBA.

Related content
INFORMS talk explores techniques Amazon’s Supply Chain Optimization Technologies organization is testing to fulfill customer orders more efficiently.

These businesses share Amazon’s storage capacity and transportation network, but make their own decisions on pricing and inventory management. COVID played a role here as well: capacity constraints meant the FBA team had to adopt limits on restocking.

“Balancing the supply and demand of capacity in a network with 60% FBA inventory is an incredibly complex business problem,” Saraogi says. “To balance capacity in the marketplace setting, we have to invent new approaches that offer predictability to our sellers and are consistent with our general laissez-faire approach to FBA, while giving Amazon the flexibility to balance the network and ensure our store has all the in-stock selection customers are looking for.

Sellers may have developed a blockbuster new product, received fresh capital, or shifted distribution toward FBA. The science for leveraging this key seller input in a scalable manner into our inventory and capacity management systems is an unchartered territory that our scientists, engineers, and product managers are working on.”

“This is a big challenge for SCOT,” Bhatia agrees. “How can we support all our independent third-party sellers in ways that result in a triple win, for them, for Amazon, and for our customers?”

The SCOT team also wrestles with something that is increasingly prevalent in the modern world of complex optimization modelling and machine learning: how to explain automated decisions to the people who need to understand why things are happening as they are.

“We have hundreds of people fielding questions from selling partners and other stakeholders,” says Humair. “Why have my in-stock rates changed? Why do I have more inventory? Each such question requires manual deep dives, hundreds of person hours to answer.” The team is currently developing new methods to make its systems more explainable.

These systems optimize millions of customer promises every second and billions of customer order fulfillment plans daily. This is done by evaluating hundreds of millions of potential transport routes across the network and tracking over a billion real-time inventory updates every day
Ashish Agiwal

Indeed, the very fact that such technology is extremely complex and requires a sophisticated technical background to fully understand makes the idea of going all-in on data science a daunting proposition,” says Humair.

“Data is always ambiguous, so you need a lot of conviction and judgment to stay the course. But it has yielded spectacular benefits for Amazon, for our selling partners, and, most importantly, for our customers.”

Another big challenge is managing transportation through Amazon’s growing delivery fleet of trucks, planes, sort centers, and delivery stations. SCOT’s Fulfillment Optimization team, led by Agiwal, runs the systems that makes outbound fulfillment decisions.

“These systems optimize millions of customer promises every second and billions of customer order fulfillment plans daily. This is done by evaluating hundreds of millions of potential transport routes across the network and tracking over a billion real-time inventory updates every day,” he says.

Amazon’s operation of its own transportation network has created what Agiwal calls “a very exciting problem space” that his team is now addressing. “Designing the network topology, optimizing connections in a multi-tier multi-modal network, and coordinating all operational resources at Amazon scale is unprecedented,” he notes.

“Our new priority is ensuring that our own delivery trucks or cargo planes are as full as possible while also meeting our customer-delivery windows,” says Bhatia.

That problem space also illustrates why Amazon SCOT is so unique.

“We are solving some of the largest, most complex problems in operations using solutions entirely built in-house,” says Agiwal. “We have some of the best scientists, engineers and product managers in the world, working together and controlling their own destiny. We have the luxury of large and diverse data sets and the ability to innovate and experiment at a massive scale with immediate, measurable impact on customer experience and costs. It is truly gratifying.”

That complexity also explains why SCOT is so appealing to data scientists, economists, and machine learning scientists of all stripes.

“Our problem dimensionality is high and closed-form solutions are rarely applicable,” notes Maurer. “Our teams continually invent and implement new algorithms and evolve the fundamental structure of our systems as the physical network changes. SCOT is a great place for people who are drawn to exceptionally complex problem spaces and motivated by having high production impact.”

Related content

  • Staff writer
    December 29, 2025
    From foundation model safety frameworks and formal verification at cloud scale to advanced robotics and multimodal AI reasoning, these are the most viewed publications from Amazon scientists and collaborators in 2025.
  • Staff writer
    December 29, 2025
    From quantum computing breakthroughs and foundation models for robotics to the evolution of Amazon Aurora and advances in agentic AI, these are the posts that captured readers' attention in 2025.
  • Staff writer
    August 21, 2025
    From reimagining storage to serverless computing, Aurora continues to push the boundaries of what's possible in database technology.
US, WA, Bellevue
Who are we? Do you want to build Amazon's next $100B business? We're not just joining the shipping industry—we're transforming how billions of packages move across the world every year. Through evolving Amazon's controlled, predictable fulfillment network into a dynamic, adaptive shipping powerhouse we are building an intelligent system that optimizes in real-time to deliver on the promises businesses make to their customers. Our mission goes beyond moving boxes—we're spinning a flywheel where every new package makes our network stronger, faster, and more efficient. As we increase density and scale, we're revolutionizing shipping for businesses while simultaneously strengthening Amazon's own delivery capabilities, driving down costs and increasing speed for our entire ecosystem. What will you do? Amazon shipping is seeking a Senior Data Scientist with strong pricing and machine learning skills to work in an embedded team, partnering closely with commercial, product and tech. This person will be responsible for developing demand prediction models for Amazon shipping’s spot pricing system. As a Senior Data Scientist, you will be part of a science team responsible for improving price discovery across Amazon shipping, measuring the impact of model implementation, and defining a roadmap for improvements and expansion of the models into new unique use cases. This person will be collaborating closely with business and software teams to research, innovate, and solve high impact economics problems facing the worldwide Amazon shipping business. Who are you? The ideal candidate is analytical, resourceful, curious and team oriented, with clear communication skills and the ability to build strong relationships with key stakeholders. You should be a strong owner, are right a lot, and have a proven track record of taking on end-to-end ownership of and successfully delivering complex projects in a fast-paced and dynamic business environment. As this position involves regular interaction with senior leadership (director+), you need to be comfortable communicating at that level while also working directly with various functional teams. Key job responsibilities * Combine ML methodologies with fundamental economics principles to create new pricing algorithms. * Automate price exploration through automated experimentation methodologies, for example using multi-armed bandit strategies. * Partner with other scientists to dynamically predict prices to maximize capacity utilization. * Collaborate with product managers, data scientists, and software developers to incorporate models into production processes and influence senior leaders. * Educate non-technical business leaders on complex modeling concepts, and explain modeling results, implications, and performance in an accessible manner. * Independently identify and pursue new opportunities to leverage economic insights * Opportunity to expand into other domains such as causal analytics, optimization and simulation. About the team Amazon Shipping's pricing team empowers our global business to find strategic harmony between growth and profit tradeoffs, while seeking long term customer value and financial viability. Our people and systems help identify and drive synergy between demand, operational, and economic planning. The breadth of our problems range from CEO-level strategic support to in-depth mathematical experimentation and optimization. Excited by the intersection of data and large scale strategic decision-making? This is the team for you!
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLE Employer: AMAZON.COM SERVICES LLC Offered Position: Data Scientist III Job Location: Seattle, Washington Job Number: AMZ9674365 Position Responsibilities: Own the data science elements of various products to help with data-based decision making, product performance optimization, and product performance tracking. Work directly with product managers to help drive the design of the product. Work with Technical Product Managers to help drive the build planning. Translate business problems and products into data requirements and metrics. Initiate the design, development, and implementation of scientific analysis projects or deliverables. Own the analysis, modelling, system design, and development of data science solutions for products. Write documents and make presentations that explain model/analysis results to the business. Bridge the degree of uncertainty in both problem definition and data scientific solution approaches. Build consensus on data, metrics, and analysis to drive business and system strategy. Position Requirements: Master's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science or a related field and two years of experience in the job offered or a related occupation. Employer will accept a Bachelor's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science, or a related field and five years of progressive post-baccalaureate experience in the job offered or a related occupation as equivalent to the Master's degree and two years of experience. Must have one year of experience in the following skills: (1) building statistical models and machine learning models using large datasets from multiple resources; (2) building complex data analyses by leveraging scripting languages including Python, Java, or related scripting language; and (3) communicating with users, technical teams, and management to collect requirements, evaluate alternatives, and develop processes and tools to support the organization. Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation. 40 hours / week, 8:00am-5:00pm, Salary Range $162,752/year to $215,300/year. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, visit: https://www.aboutamazon.com/workplace/employee-benefits.#0000
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, CA, Sunnyvale
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to help build industry-leading technology with multimodal language models for various edge applications. This role is for a Sr. Applied Scientist to lead science efforts for on-device inference pipelines and orchestration, working closely with cross-functional product and engineering teams to invent, design, develop, and validate new AI features for our devices. Key job responsibilities * Lead cross-functional efforts to invent, design, develop, and validate new AI features for our devices * Invent, build, and evaluate model inference and orchestrations to enable new customer experiences * Drive partnerships with product and engineering teams to implement algorithms and models in production * Train and optimize state-of-the-art multimodal models for resource-efficient deployment * Work closely with compiler engineers, hardware architects, data collection, and product teams A day in the life As an Applied Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to science solution design, conduct experiments, explore new algorithms, develop embedded inference pipelines, and discover ways to enrich our customer experiences. You'll have opportunities to collaborate across teams of engineers and scientists to bring algorithms and models to production. About the team Our Devices team specializes in inventing new-to-world, category creating products using advanced machine learning technologies. This role is on a new cross-functional team, whose cadence and structure resembles an efficient and fast-paced startup, with rapid growth and development opportunities.
US, CA, San Francisco
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, NY, New York
Principal Applied Scientists in AWS Science of Security are dedicated to making AWS the best computing service in the world for customers who require advanced and rigorous solutions for security, privacy, and sovereignty. Key job responsibilities The successful candidate will: *Solve large or significantly complex problems that require deep knowledge and understanding of your domain and scientific innovation. *Own strategic problem solving, and take the lead on the design, implementation, and delivery for solutions that have a long-term quantifiable impact. *Povide cross-organizational technical influence, increasing productivity and effectiveness by sharing your deep knowledge and experience. * Develop strategic plans to identify fundamentally new solutions for business problems. * Assist in the career development of others, actively mentoring individuals and the community on advanced technical issues. A day in the life This is a unique and rare opportunity to get in early on a fast-growing segment of AWS and help shape the technology, product and the business. You will have a chance to utilize your deep technical experience within a fast moving, start-up environment and make a large business and customer impact.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models.  As a Principal Scientist, you will lead the research and development of complex sensing systems that help our robots perceive the world around them. You will explore and guide the exploration of novel sensing modalities, refining the existing ones, and imagine the future of robot–based perception, safety, and navigation. You will formulate a robust sensing architecture, lead the experimentation and prototyping, and take part in creating future robots that are fully aware of their surroundings. Key job responsibilities - Build and lead teams focused on hardware, firmware, and embedded systems - Drive technical roadmaps for next-generation robotics platforms - Drive architecture decisions for complex robotics perception systems - Bring the latest trends and scientific developments in robotic perception to the technical team - Create technical standards for robotics sensing platforms - Drive innovation in real-time perception and control systems
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As an Applied Scientist on our team, you will: * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Collaborate with simulation and robotics experts to translate physical modeling needs into robust, scalable, and maintainable simulation solutions. - Design and implement high-performance simulation modeling and tools for rigid and deformable body simulation. - Identify and optimize performance bottlenecks in simulation pipelines to support real-time and batch simulation workflows. - Help build validation and unit testing pipelines to ensure correctness and physical fidelity of simulation results. - Identify potential sources of sim-to-real gaps and propose modeling and numerical approximations to reduce them. - Stay current with the latest advances in numerical methods, parallel computing, and GPU architectures, and incorporate them into our tools.