History of SCOT lead image.jpg
In a little over a decade, Amazon’s Supply Chain Optimization Technologies team (SCOT) has built one of the largest and most sophisticated automated decision-making systems in the world.

Solving some of the largest, most complex operations problems

How Amazon’s Supply Chain Optimization Technologies team has evolved over time to meet a challenge of staggering complexity.

Amazon’s ability to grow to an unprecedented scale, while simultaneously meeting the growing expectations of its customers, particularly around delivery speeds, is a success story on many levels.

One of the keys to that success is a team that is fundamental to Amazon’s increasingly rapid transformation. A largely unsung team that in little more than a decade has built one of the largest and most sophisticated automated decision-making systems in the world. A team that has harnessed simulation, mathematical optimization, and machine learning to create the capability to deliver products at speeds once thought impossible at the mass market scale — in some cases within 2 hours — across a fulfillment network of dizzying complexity.

This is Amazon’s Supply Chain Optimization Technologies team (SCOT). If the Amazon Store were a human body, think of SCOT as its nervous system: essential to life, quietly acting in the background to automatically optimize critical functions and flows.

“At SCOT, using science and technology to optimize the supply chain is not just an enabler, it's our core focus,” says Ashish Agiwal, vice president, Fulfillment Optimization.

Today, SCOT’s systems have end-to-end responsibility for orchestrating Amazon Store’s supply chain.

SCOT is responsible for computing the delivery promises Amazon Store customers see when ordering, forecasting demand for its hundreds of millions of products, deciding which products to stock and in what quantities, allocating stock to warehouses and fulfillment centers (FCs) in anticipation of regional customer needs, offering markdown pricing when necessary, working out how to consolidate customer orders for maximum efficiency, coordinating inbound and inventory management from millions of sellers worldwide, and so much more.

But it was not always thus. Far from it, says Deepak Bhatia, vice president of SCOT, whose team’s methodologies and mechanisms will be a topic of conversation at INFORMS, the world’s largest operations research and analytics conference, taking place next week in Indianapolis, Indiana.

“A very different world”

In 2011 when Bhatia joined Amazon, the team that would evolve into SCOT was much smaller, he recalls, and its main concern was trying to automate Amazon’s product buying and inventory management.

“It was a very different world. The notion of an end-to-end supply chain tech function wasn’t there. But there were powerful intellects and a lot of energy in that team.”

It was a huge deal. Will it improve things, and if so by how much? Will it completely break? In the beginning, we took baby steps. We made changes one product category at a time.
Deepak Bhatia

In 2011, Amazon’s total revenue reached nearly $48 billion, and it was already clear to the senior leadership that the company’s scale would require the automation of buying and the management of inventory; monitoring spreadsheets was not a long-term solution. Indeed, even then the sheer range of products offered by Amazon meant the “illusion of control” was already kicking in among the groups managing inventory, says Bhatia. In fact, Bhatia notes, the sheer complexity and scale meant the challenge was beyond the scope of any team, let alone an individual.

In response, Bhatia and his colleagues set out to develop complex algorithms that could make buying and inventory placement decisions for a given category of products. And while that was all well and good in theory, trying it for real was a watershed moment.

“It was a huge deal. Will it improve things, and if so by how much? Will it completely break? In the beginning, we took baby steps. We made changes one product category at a time.”

Media category products were the early adopters. In randomized, controlled trials that ran over several months, some of these products were managed in the traditional way, and some by the new algorithms. Crucially, human judgement could still override the system’s decisions if deemed necessary.

The trial went well — the algorithms’ decisions were overridden only a small percentage of the time — and the approach was expanded across additional categories, including consumables such as groceries.

Going all in

“Then one day, in a high-level meeting someone said: ‘What if we go all in and make these categories 100% automated?’, Bhatia recalls. “Someone responded ‘All hell will break loose’.” And that, Bhatia notes, is where Amazon’s comfort with risk-taking came into play. “They decided to go all in.” That was around 2014. And the systems worked as designed, improving customer experience outcomes like in-stock rates while reducing costs.

One day, in a high-level meeting someone said: ‘What if we go all in and make these categories 100% automated?’ Someone responded ‘All hell will break loose’.
Deepak Bhatia

“After this success, automating one product category at a time started to feel too risk-averse,” says Bhatia.

Over the next few years, the technology was rapidly rolled out across the retail business, all the while being iterated and improved upon, with increasing success in terms of efficiency and customer satisfaction. At the same time, the rapidly growing SCOT team was developing technologies that would enable them to join the dots from one end of the Amazon supply chain to the other.

For example, SCOT grew its own demand forecasting team, with a sharp focus on scientific and technological innovation. The forecasting aspect of SCOT’s work started out as a patchwork of models, which evolved eventually to deep learning approaches to decide what features of the retail data were most important.

Related content
The story of a decade-plus long journey toward a unified forecasting model.

Today, building on a 2018 in-house research breakthrough, the forecasting team is using a single model that learns business-critical demand patterns without even being told what to look for. Called the Multi-Horizon Quantile Recurrent Forecaster, the model can accurately forecast shifting seasonal demand, future planned-event demand spikes and even “cold-start forecasting” for products with limited sales history.

Forecast accuracy is particularly important at Amazon’s scale.

“SCOT is directing hundreds of billions of dollars of product flows. That means just a few percentage points of change in our topline predictions equates to several fulfillment centers worth of products,” says Salal Humair, a SCOT vice president and Amazon distinguished scientist.

As SCOT’s demand forecasting has improved, so too has its ability to ensure that products were best positioned to fulfill those anticipated customer orders.

The challenge of One-Day Delivery

While Amazon’s largely manual inventory management system became increasingly automated in the early part of the previous decade, those changes proved insufficient for the logistical challenges that lay ahead: Amazon’s ever more ambitious customer-delivery promises, particularly its One-Day Delivery promise in the US in 2019, and Prime Now, Amazon's 2-hour grocery businesses.

“Before we announced the One-Day Delivery promise, a detailed SCOT simulation called Mechanical Sensei was the key to figuring out how much additional inventory we would need, where it would be placed, and how that would affect shipping costs,” says Humair.

So, at a time when Amazon was continuing to expand globally, the company’s bold delivery promises meant there was a pressing need to locate products closer to Amazon customers. This meant a significant increase in local distribution facilities, and yet another challenge: which items should be locally placed?

“Most of our systems were designed to operate under the simplifying assumption that demand for each item sold on the website is independent, but we know that’s not the case in reality,” says Jeffrey Maurer, vice president, Inventory Planning and Control. “When one product goes out of stock, or isn’t available for fast delivery, demand shifts to other products. We can’t make every product locally available in every location, so how do we account for these constraints while trying to maximize customer satisfaction?”

That nut has yet to be comprehensively cracked, but the simple fact of adding local warehousing resulted in a supply chain network of such layered complexity, that the SCOT team realized its automated network would need yet another radical redesign.

From left to right, Ashish Agiwal, vice president, Fulfillment Optimization; Deepak Bhatia, vice president of SCOT; Salal Humair, a SCOT vice president and Amazon distinguished scientist; Jeffrey Maurer, vice president, Inventory Planning and Control; and Piyush Saraogi, vice president, Fulfillment By Amazon.
From left to right, Ashish Agiwal, vice president, Fulfillment Optimization; Deepak Bhatia, vice president of SCOT; Salal Humair, a SCOT vice president and Amazon distinguished scientist; Jeffrey Maurer, vice president, Inventory Planning and Control; and Piyush Saraogi, vice president, Fulfillment By Amazon.

It took them several years to solve for the new set of challenges.

“We had to iterate, fail, iterate, fail, iterate, fail many times,” Humair recalls.

Then, in 2020, the team unveiled its latest breakthrough: the “multi-echelon system”. This is a multi-product, multi-layered, multi-fulfillment center model for optimizing inventory levels for varying delivery speeds in a space where future demand, product lead times and capacity constraints are all uncertain, and where real-time customer promises and fulfillment make the demand patterns seen by FCs very hard to characterize.

“We have a strong sense of pride for the work the SCOT team is doing,” says Bhatia. “These sorts of solutions are just unheard of in academia and industry.”

The SCOT team was able to demonstrate significant improvements to inventory buying and placement through the multi-echelon system, but rolling it out across the business was a challenge.

“Not only did the teams, systems and coordination mechanisms all need to be rebuilt, but we also had to keep the business running,” says Humair. “We had to change the engine while still flying the plane!”

Related content
The SCOT science team used lessons from the past — and improved existing tools — to contend with “a peak that lasted two years”.

And then there was COVID. “The impact of COVID on our supply chain brought capacity management to the forefront,” says Maurer. “It was no longer enough to be approximately right at network level in terms of capacity management; we needed to get it exactly right at every facility and connection in our network.”

Ultimately, the successful combination of powerful forecasting, multi-echelon inventory management‚ and several other algorithms and systems — running the gamut from fulfillment to customer promise, inventory health, and inventory placement — along with unparalleled distribution capacity enabled Amazon to deal with the effects of COVID as well as the enormous surges in demand created by shopping events such as Cyber Monday and Amazon’s own Prime Day. The latter, this year, resulted in the record-breaking purchase of more than 300 million items across more than 20 countries.

Future challenges

So what are the current and future challenges in SCOT’s sights?

“The range of problems requiring disruptive technology solutions is not exhausted,” Humair notes.

For example, about 60% of the Amazon Store’s sales is through Fulfillment by Amazon (FBA), a service for small-and-medium sized businesses to provide unique selection for Amazon customers at low costs and fast speeds.

Optimizing supply chain efficiency would be hard enough at Amazon’s scale, even if Amazon was in full control of every aspect of its fulfillment network. “However we work with millions of FBA sellers with different cost structures and inventory management practices who independently decide what to sell, how much to inbound, and how to price their products,” notes Piyush Saraogi, vice president, FBA.

Related content
INFORMS talk explores techniques Amazon’s Supply Chain Optimization Technologies organization is testing to fulfill customer orders more efficiently.

These businesses share Amazon’s storage capacity and transportation network, but make their own decisions on pricing and inventory management. COVID played a role here as well: capacity constraints meant the FBA team had to adopt limits on restocking.

“Balancing the supply and demand of capacity in a network with 60% FBA inventory is an incredibly complex business problem,” Saraogi says. “To balance capacity in the marketplace setting, we have to invent new approaches that offer predictability to our sellers and are consistent with our general laissez-faire approach to FBA, while giving Amazon the flexibility to balance the network and ensure our store has all the in-stock selection customers are looking for.

Sellers may have developed a blockbuster new product, received fresh capital, or shifted distribution toward FBA. The science for leveraging this key seller input in a scalable manner into our inventory and capacity management systems is an unchartered territory that our scientists, engineers, and product managers are working on.”

“This is a big challenge for SCOT,” Bhatia agrees. “How can we support all our independent third-party sellers in ways that result in a triple win, for them, for Amazon, and for our customers?”

The SCOT team also wrestles with something that is increasingly prevalent in the modern world of complex optimization modelling and machine learning: how to explain automated decisions to the people who need to understand why things are happening as they are.

“We have hundreds of people fielding questions from selling partners and other stakeholders,” says Humair. “Why have my in-stock rates changed? Why do I have more inventory? Each such question requires manual deep dives, hundreds of person hours to answer.” The team is currently developing new methods to make its systems more explainable.

These systems optimize millions of customer promises every second and billions of customer order fulfillment plans daily. This is done by evaluating hundreds of millions of potential transport routes across the network and tracking over a billion real-time inventory updates every day
Ashish Agiwal

Indeed, the very fact that such technology is extremely complex and requires a sophisticated technical background to fully understand makes the idea of going all-in on data science a daunting proposition,” says Humair.

“Data is always ambiguous, so you need a lot of conviction and judgment to stay the course. But it has yielded spectacular benefits for Amazon, for our selling partners, and, most importantly, for our customers.”

Another big challenge is managing transportation through Amazon’s growing delivery fleet of trucks, planes, sort centers, and delivery stations. SCOT’s Fulfillment Optimization team, led by Agiwal, runs the systems that makes outbound fulfillment decisions.

“These systems optimize millions of customer promises every second and billions of customer order fulfillment plans daily. This is done by evaluating hundreds of millions of potential transport routes across the network and tracking over a billion real-time inventory updates every day,” he says.

Amazon’s operation of its own transportation network has created what Agiwal calls “a very exciting problem space” that his team is now addressing. “Designing the network topology, optimizing connections in a multi-tier multi-modal network, and coordinating all operational resources at Amazon scale is unprecedented,” he notes.

“Our new priority is ensuring that our own delivery trucks or cargo planes are as full as possible while also meeting our customer-delivery windows,” says Bhatia.

That problem space also illustrates why Amazon SCOT is so unique.

“We are solving some of the largest, most complex problems in operations using solutions entirely built in-house,” says Agiwal. “We have some of the best scientists, engineers and product managers in the world, working together and controlling their own destiny. We have the luxury of large and diverse data sets and the ability to innovate and experiment at a massive scale with immediate, measurable impact on customer experience and costs. It is truly gratifying.”

That complexity also explains why SCOT is so appealing to data scientists, economists, and machine learning scientists of all stripes.

“Our problem dimensionality is high and closed-form solutions are rarely applicable,” notes Maurer. “Our teams continually invent and implement new algorithms and evolve the fundamental structure of our systems as the physical network changes. SCOT is a great place for people who are drawn to exceptionally complex problem spaces and motivated by having high production impact.”

Related content

  • Staff writer
    October 21, 2025
    Initiative will fund over 100 doctoral students researching machine learning, computer vision, and natural-language processing at nine universities.
  • Staff writer
    December 29, 2025
    From foundation model safety frameworks and formal verification at cloud scale to advanced robotics and multimodal AI reasoning, these are the most viewed publications from Amazon scientists and collaborators in 2025.
  • Staff writer
    December 29, 2025
    From quantum computing breakthroughs and foundation models for robotics to the evolution of Amazon Aurora and advances in agentic AI, these are the posts that captured readers' attention in 2025.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
CN, 31, Shanghai
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. Starting in 2024, the Innovation Center launched a new Custom Model and Optimization program to help customers develop and scale highly customized generative AI solutions. The team helps customers imagine and scope bespoke use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop and optimize models to power their solutions, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. As an Applied Scientist, you will - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges - Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production - Help customers optimize their solutions through approaches such as model selection, training or tuning, right-sizing, distillation, and hardware optimization - Provide customer and market feedback to product and engineering teams to help define product direction About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. This position is part of the Satellite Attitude Determination and Control team. You will design and analyze the control system and algorithms, support development of our flight hardware and software, help integrate the satellite in our labs, participate in flight operations, and see a constellation of satellites flow through the production line in the building next door. Key job responsibilities - Design and analyze algorithms for estimation, flight control, and precise pointing using linear methods and simulation. - Develop and apply models and simulations, with various levels of fidelity, of the satellite and our constellation. - Component level environmental testing, functional and performance checkout, subsystem integration, satellite integration, and in space operations. - Manage the spacecraft constellation as it grows and evolves. - Continuously improve our ability to serve customers by maximizing payload operations time. - Develop autonomy for Fault Detection and Isolation on board the spacecraft. A day in the life This is an opportunity to play a significant role in the design of an entirely new satellite system with challenging performance requirements. The large, integrated constellation brings opportunities for advanced capabilities that need investigation and development. The constellation size also puts emphasis on engineering excellence so our tools and methods, from conceptualization through manufacturing and all phases of test, will be state of the art as will the satellite and supporting infrastructure on the ground. You will find that Amazon Leo's mission is compelling, so our program is staffed with some of the top engineers in the industry. Our daily collaboration with other teams on the program brings constant opportunity for discovery, learning, and growth. About the team Our team has lots of experience with various satellite systems and many other flight vehicles. We have bench strength in both our mission and core GNC disciplines. We design, prototype, test, iterate and learn together. Because GNC is central to safe flight, we tend to drive Concepts of Operation and many system level analyses.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for applied scientists to solve challenging and open-ended problems in the domain of user and content safety. As an applied scientist on Twitch's Community team, you will use machine learning to develop data products tackling problems such as harassment, spam, and illegal content. You will use a wide toolbox of ML tools to handle multiple types of data, including user behavior, metadata, and user generated content such as text and video. You will collaborate with a team of passionate scientists and engineers to develop these models and put them into production, where they can help Twitch's creators and viewers succeed and build communities. You will report to our Senior Applied Science Manager in San Francisco, CA. You can work from San Francisco, CA or Seattle, WA. You Will - Build machine learning products to protect Twitch and its users from abusive behavior such as harassment, spam, and violent or illegal content. - Work backwards from customer problems to develop the right solution for the job, whether a classical ML model or a state-of-the-art one. - Collaborate with Community Health's engineering and product management team to productionize your models into flexible data pipelines and ML-based services. - Continue to learn and experiment with new techniques in ML, software engineering, or safety so that we can better help communities on Twitch grow and stay safe. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
US, WA, Redmond
As a Guidance, Navigation & Control Hardware Engineer, you will directly contribute to the planning, selection, development, and acceptance of Guidance, Navigation & Control hardware for Amazon Leo's constellation of satellites. Specializing in critical satellite hardware components including reaction wheels, star trackers, magnetometers, sun sensors, and other spacecraft sensors and actuators, you will play a crucial role in the integration and support of these precision systems. You will work closely with internal Amazon Leo hardware teams who develop these components, as well as Guidance, Navigation & Control engineers, software teams, systems engineering, configuration & data management, and Assembly, Integration & Test teams. A key aspect of your role will be actively resolving hardware issues discovered during both factory testing phases and operational space missions, working hand-in-hand with internal Amazon Leo hardware development teams to implement solutions and ensure optimal satellite performance. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. Key job responsibilities * Planning and coordination of resources necessary to successfully accept and integrate satellite Guidance, Navigation & Control components including reaction wheels, star trackers, magnetometers, and sun sensors provided by internal Amazon Leo teams * Partner with internal Amazon Leo hardware teams to develop and refine spacecraft actuator and sensor solutions, ensuring they meet requirements and providing technical guidance for future satellite designs * Collaborate with internal Amazon Leo hardware development teams to resolve issues discovered during both factory test phases and operational space missions, implementing corrective actions and design improvements * Work with internal Amazon Leo teams to ensure state-of-the-art satellite hardware technologies including precision pointing systems, attitude determination sensors, and spacecraft actuators meet mission requirements * Lead verification and testing activities, ensuring satellite Guidance, Navigation & Control hardware components meet stringent space-qualified requirements * Drive implementation of hardware-in-the-loop testing for satellite systems, coordinating with internal Amazon Leo hardware engineers to validate component performance in simulated space environments * Troubleshoot and resolve complex hardware integration issues working directly with internal Amazon Leo hardware development teams
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Demand Utilization team with Sponsored Products and Brands owns finding the appropriate ads to surface to customers when they search for products on Amazon. We strive to understand our customers’ intent and identify relevant ads which enable them to discover new and alternate products. This also enables sellers on Amazon to showcase their products to customers, which may at times be buried deeper in the search results. Our systems and algorithms operate on one of the world's largest product catalogs, matching shoppers with products - with a high relevance bar and strict latency constraints. We are a team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience, but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term-growth. We are looking for an Applied Scientist III, with a background in Machine Learning to optimize serving ads on billions of product pages. The solutions you create would drive step increases in coverage of sponsored ads across the retail website and ensure relevant ads are served to Amazon's customers. You will directly impact our customers’ shopping experience while helping our sellers get the maximum ROI from advertising on Amazon. You will be expected to demonstrate strong ownership and should be curious to learn and leverage the rich textual, image, and other contextual signals. This role will challenge you to utilize innovative machine learning techniques in the domain of predictive modeling, natural language processing (NLP), deep learning, reinforcement learning, query understanding, vector search (kNN) and image recognition to deliver significant impact for the business. Ideal candidates will be able to work cross functionally across multiple stakeholders, synthesize the science needs of our business partners, develop models to solve business needs, and implement solutions in production. In addition to being a strongly motivated IC, you will also be responsible for mentoring junior scientists and guiding them to deliver high impacting products and services for Amazon customers and sellers. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE Key job responsibilities As an Applied Scientist III on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in deploying your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches.
US, VA, Arlington
Customer Experience and Business Trends (CXBT) is looking for an Applied Scientist to join its team. CXBT's mission is to create best-in-class AI agents that seamlessly integrate multimodal inputs, enabling natural, empathetic, and adaptive interactions. We leverage advanced architectures, cross-modal learning, interpretability, and responsible AI techniques to provide coherent, context-aware responses augmented by real-time knowledge retrieval. As part of CXBT, we have a vision to revolutionize how we understand, test, and optimize customer experiences at scale. Where traditional testing approaches fall short, we create AI-powered solutions that enable rapid experimentation, de-risk product launches, and generate actionable insights, -all before a single real customer is impacted. Be a part of our agentic initiative and shape how Amazon leverages artificial intelligence to run tests at scale and improve customer experiences. As an Applied Scientist, you will research state-of-the-art techniques in agent-based modeling, and lead scientific innovation by building foundational agentic simulation capabilities. If you are passionate about the intersection of AI and human behavior modeling, and want to fundamentally influence how Amazon tests and improves customer experiences, this role offers a great opportunity to make your mark. Key job responsibilities - Design and implement frameworks for creating representative, diverse agents that faithfully capture real-world characteristics - Use state-of-the-art techniques in user modeling and behavioral simulation to build robust agentic frameworks - Develop data simulation approaches that mimic real-world speech interactions. - Research and implement novel algorithms and modeling techniques. - Acquire and curate diverse datasets while ensuring user privacy. - Create robust evaluation metrics and test sets to assess language model performance. - Innovate in data representation and model training techniques. - Apply responsible AI practices throughout the development process. - Write clear, scientific documentation describing methodologies, solutions, and design choices. A day in the life Our team is dedicated to improving Amazon's products and services through evaluation of the end-to-end customer experience using both internal and external processes and technology. Our mission is to deeply understand our customers' experiences, challenge the status quo, and provide insights that drive innovation to improve that experience. Through our analysis and insights, we inform business decisions that directly impact customer experience as customers of new GenAI and LLM technologies. About the team Customer Experience and Business Trends (CXBT) is an organization made up of a diverse suite of functions dedicated to deeply understanding and improving customer experience, globally. We are a team of builders that develop products, services, ideas, and various ways of leveraging data to influence product and service offerings – for almost every business at Amazon – for every customer (e.g., consumers, developers, sellers/brands, employees, investors, streamers, gamers).
US, WA, Seattle
We are looking for a passionate Applied Scientist to contribute to the next generation of agentic AI applications for Amazon advertisers. In this role, you will support the development of agentic architectures, help build tools and datasets, and contribute to systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work alongside senior scientists at the forefront of applied AI, gaining hands-on experience with methods for fine-tuning, reinforcement learning, and preference optimization, while contributing to evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—contributing to customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will support the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role involves tackling well-scoped technical problems, while collaborating with engineers and product managers to bring solutions into production. Key Job Responsibilities - Contribute to building agents that guide advertisers in conversational and non-conversational experiences. - Implement model and agent optimization techniques, including supervised fine-tuning, instruction tuning, and preference optimization (e.g., DPO/IPO) under guidance from senior scientists. - Support dataset curation and tool development for MCP. - Contribute to evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Implement and iterate on agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Support prototyping of multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering, science, and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and apply findings to practical problems. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.