History of SCOT lead image.jpg
In a little over a decade, Amazon’s Supply Chain Optimization Technologies team (SCOT) has built one of the largest and most sophisticated automated decision-making systems in the world.

Solving some of the largest, most complex operations problems

How Amazon’s Supply Chain Optimization Technologies team has evolved over time to meet a challenge of staggering complexity.

Amazon’s ability to grow to an unprecedented scale, while simultaneously meeting the growing expectations of its customers, particularly around delivery speeds, is a success story on many levels.

One of the keys to that success is a team that is fundamental to Amazon’s increasingly rapid transformation. A largely unsung team that in little more than a decade has built one of the largest and most sophisticated automated decision-making systems in the world. A team that has harnessed simulation, mathematical optimization, and machine learning to create the capability to deliver products at speeds once thought impossible at the mass market scale — in some cases within 2 hours — across a fulfillment network of dizzying complexity.

This is Amazon’s Supply Chain Optimization Technologies team (SCOT). If the Amazon Store were a human body, think of SCOT as its nervous system: essential to life, quietly acting in the background to automatically optimize critical functions and flows.

“At SCOT, using science and technology to optimize the supply chain is not just an enabler, it's our core focus,” says Ashish Agiwal, vice president, Fulfillment Optimization.

Today, SCOT’s systems have end-to-end responsibility for orchestrating Amazon Store’s supply chain.

SCOT is responsible for computing the delivery promises Amazon Store customers see when ordering, forecasting demand for its hundreds of millions of products, deciding which products to stock and in what quantities, allocating stock to warehouses and fulfillment centers (FCs) in anticipation of regional customer needs, offering markdown pricing when necessary, working out how to consolidate customer orders for maximum efficiency, coordinating inbound and inventory management from millions of sellers worldwide, and so much more.

But it was not always thus. Far from it, says Deepak Bhatia, vice president of SCOT, whose team’s methodologies and mechanisms will be a topic of conversation at INFORMS, the world’s largest operations research and analytics conference, taking place next week in Indianapolis, Indiana.

“A very different world”

In 2011 when Bhatia joined Amazon, the team that would evolve into SCOT was much smaller, he recalls, and its main concern was trying to automate Amazon’s product buying and inventory management.

“It was a very different world. The notion of an end-to-end supply chain tech function wasn’t there. But there were powerful intellects and a lot of energy in that team.”

It was a huge deal. Will it improve things, and if so by how much? Will it completely break? In the beginning, we took baby steps. We made changes one product category at a time.
Deepak Bhatia

In 2011, Amazon’s total revenue reached nearly $48 billion, and it was already clear to the senior leadership that the company’s scale would require the automation of buying and the management of inventory; monitoring spreadsheets was not a long-term solution. Indeed, even then the sheer range of products offered by Amazon meant the “illusion of control” was already kicking in among the groups managing inventory, says Bhatia. In fact, Bhatia notes, the sheer complexity and scale meant the challenge was beyond the scope of any team, let alone an individual.

In response, Bhatia and his colleagues set out to develop complex algorithms that could make buying and inventory placement decisions for a given category of products. And while that was all well and good in theory, trying it for real was a watershed moment.

“It was a huge deal. Will it improve things, and if so by how much? Will it completely break? In the beginning, we took baby steps. We made changes one product category at a time.”

Media category products were the early adopters. In randomized, controlled trials that ran over several months, some of these products were managed in the traditional way, and some by the new algorithms. Crucially, human judgement could still override the system’s decisions if deemed necessary.

The trial went well — the algorithms’ decisions were overridden only a small percentage of the time — and the approach was expanded across additional categories, including consumables such as groceries.

Going all in

“Then one day, in a high-level meeting someone said: ‘What if we go all in and make these categories 100% automated?’, Bhatia recalls. “Someone responded ‘All hell will break loose’.” And that, Bhatia notes, is where Amazon’s comfort with risk-taking came into play. “They decided to go all in.” That was around 2014. And the systems worked as designed, improving customer experience outcomes like in-stock rates while reducing costs.

One day, in a high-level meeting someone said: ‘What if we go all in and make these categories 100% automated?’ Someone responded ‘All hell will break loose’.
Deepak Bhatia

“After this success, automating one product category at a time started to feel too risk-averse,” says Bhatia.

Over the next few years, the technology was rapidly rolled out across the retail business, all the while being iterated and improved upon, with increasing success in terms of efficiency and customer satisfaction. At the same time, the rapidly growing SCOT team was developing technologies that would enable them to join the dots from one end of the Amazon supply chain to the other.

For example, SCOT grew its own demand forecasting team, with a sharp focus on scientific and technological innovation. The forecasting aspect of SCOT’s work started out as a patchwork of models, which evolved eventually to deep learning approaches to decide what features of the retail data were most important.

Related content
The story of a decade-plus long journey toward a unified forecasting model.

Today, building on a 2018 in-house research breakthrough, the forecasting team is using a single model that learns business-critical demand patterns without even being told what to look for. Called the Multi-Horizon Quantile Recurrent Forecaster, the model can accurately forecast shifting seasonal demand, future planned-event demand spikes and even “cold-start forecasting” for products with limited sales history.

Forecast accuracy is particularly important at Amazon’s scale.

“SCOT is directing hundreds of billions of dollars of product flows. That means just a few percentage points of change in our topline predictions equates to several fulfillment centers worth of products,” says Salal Humair, a SCOT vice president and Amazon distinguished scientist.

As SCOT’s demand forecasting has improved, so too has its ability to ensure that products were best positioned to fulfill those anticipated customer orders.

The challenge of One-Day Delivery

While Amazon’s largely manual inventory management system became increasingly automated in the early part of the previous decade, those changes proved insufficient for the logistical challenges that lay ahead: Amazon’s ever more ambitious customer-delivery promises, particularly its One-Day Delivery promise in the US in 2019, and Prime Now, Amazon's 2-hour grocery businesses.

“Before we announced the One-Day Delivery promise, a detailed SCOT simulation called Mechanical Sensei was the key to figuring out how much additional inventory we would need, where it would be placed, and how that would affect shipping costs,” says Humair.

So, at a time when Amazon was continuing to expand globally, the company’s bold delivery promises meant there was a pressing need to locate products closer to Amazon customers. This meant a significant increase in local distribution facilities, and yet another challenge: which items should be locally placed?

“Most of our systems were designed to operate under the simplifying assumption that demand for each item sold on the website is independent, but we know that’s not the case in reality,” says Jeffrey Maurer, vice president, Inventory Planning and Control. “When one product goes out of stock, or isn’t available for fast delivery, demand shifts to other products. We can’t make every product locally available in every location, so how do we account for these constraints while trying to maximize customer satisfaction?”

That nut has yet to be comprehensively cracked, but the simple fact of adding local warehousing resulted in a supply chain network of such layered complexity, that the SCOT team realized its automated network would need yet another radical redesign.

From left to right, Ashish Agiwal, vice president, Fulfillment Optimization; Deepak Bhatia, vice president of SCOT; Salal Humair, a SCOT vice president and Amazon distinguished scientist; Jeffrey Maurer, vice president, Inventory Planning and Control; and Piyush Saraogi, vice president, Fulfillment By Amazon.
From left to right, Ashish Agiwal, vice president, Fulfillment Optimization; Deepak Bhatia, vice president of SCOT; Salal Humair, a SCOT vice president and Amazon distinguished scientist; Jeffrey Maurer, vice president, Inventory Planning and Control; and Piyush Saraogi, vice president, Fulfillment By Amazon.

It took them several years to solve for the new set of challenges.

“We had to iterate, fail, iterate, fail, iterate, fail many times,” Humair recalls.

Then, in 2020, the team unveiled its latest breakthrough: the “multi-echelon system”. This is a multi-product, multi-layered, multi-fulfillment center model for optimizing inventory levels for varying delivery speeds in a space where future demand, product lead times and capacity constraints are all uncertain, and where real-time customer promises and fulfillment make the demand patterns seen by FCs very hard to characterize.

“We have a strong sense of pride for the work the SCOT team is doing,” says Bhatia. “These sorts of solutions are just unheard of in academia and industry.”

The SCOT team was able to demonstrate significant improvements to inventory buying and placement through the multi-echelon system, but rolling it out across the business was a challenge.

“Not only did the teams, systems and coordination mechanisms all need to be rebuilt, but we also had to keep the business running,” says Humair. “We had to change the engine while still flying the plane!”

Related content
The SCOT science team used lessons from the past — and improved existing tools — to contend with “a peak that lasted two years”.

And then there was COVID. “The impact of COVID on our supply chain brought capacity management to the forefront,” says Maurer. “It was no longer enough to be approximately right at network level in terms of capacity management; we needed to get it exactly right at every facility and connection in our network.”

Ultimately, the successful combination of powerful forecasting, multi-echelon inventory management‚ and several other algorithms and systems — running the gamut from fulfillment to customer promise, inventory health, and inventory placement — along with unparalleled distribution capacity enabled Amazon to deal with the effects of COVID as well as the enormous surges in demand created by shopping events such as Cyber Monday and Amazon’s own Prime Day. The latter, this year, resulted in the record-breaking purchase of more than 300 million items across more than 20 countries.

Future challenges

So what are the current and future challenges in SCOT’s sights?

“The range of problems requiring disruptive technology solutions is not exhausted,” Humair notes.

For example, about 60% of the Amazon Store’s sales is through Fulfillment by Amazon (FBA), a service for small-and-medium sized businesses to provide unique selection for Amazon customers at low costs and fast speeds.

Optimizing supply chain efficiency would be hard enough at Amazon’s scale, even if Amazon was in full control of every aspect of its fulfillment network. “However we work with millions of FBA sellers with different cost structures and inventory management practices who independently decide what to sell, how much to inbound, and how to price their products,” notes Piyush Saraogi, vice president, FBA.

Related content
INFORMS talk explores techniques Amazon’s Supply Chain Optimization Technologies organization is testing to fulfill customer orders more efficiently.

These businesses share Amazon’s storage capacity and transportation network, but make their own decisions on pricing and inventory management. COVID played a role here as well: capacity constraints meant the FBA team had to adopt limits on restocking.

“Balancing the supply and demand of capacity in a network with 60% FBA inventory is an incredibly complex business problem,” Saraogi says. “To balance capacity in the marketplace setting, we have to invent new approaches that offer predictability to our sellers and are consistent with our general laissez-faire approach to FBA, while giving Amazon the flexibility to balance the network and ensure our store has all the in-stock selection customers are looking for.

Sellers may have developed a blockbuster new product, received fresh capital, or shifted distribution toward FBA. The science for leveraging this key seller input in a scalable manner into our inventory and capacity management systems is an unchartered territory that our scientists, engineers, and product managers are working on.”

“This is a big challenge for SCOT,” Bhatia agrees. “How can we support all our independent third-party sellers in ways that result in a triple win, for them, for Amazon, and for our customers?”

The SCOT team also wrestles with something that is increasingly prevalent in the modern world of complex optimization modelling and machine learning: how to explain automated decisions to the people who need to understand why things are happening as they are.

“We have hundreds of people fielding questions from selling partners and other stakeholders,” says Humair. “Why have my in-stock rates changed? Why do I have more inventory? Each such question requires manual deep dives, hundreds of person hours to answer.” The team is currently developing new methods to make its systems more explainable.

These systems optimize millions of customer promises every second and billions of customer order fulfillment plans daily. This is done by evaluating hundreds of millions of potential transport routes across the network and tracking over a billion real-time inventory updates every day
Ashish Agiwal

Indeed, the very fact that such technology is extremely complex and requires a sophisticated technical background to fully understand makes the idea of going all-in on data science a daunting proposition,” says Humair.

“Data is always ambiguous, so you need a lot of conviction and judgment to stay the course. But it has yielded spectacular benefits for Amazon, for our selling partners, and, most importantly, for our customers.”

Another big challenge is managing transportation through Amazon’s growing delivery fleet of trucks, planes, sort centers, and delivery stations. SCOT’s Fulfillment Optimization team, led by Agiwal, runs the systems that makes outbound fulfillment decisions.

“These systems optimize millions of customer promises every second and billions of customer order fulfillment plans daily. This is done by evaluating hundreds of millions of potential transport routes across the network and tracking over a billion real-time inventory updates every day,” he says.

Amazon’s operation of its own transportation network has created what Agiwal calls “a very exciting problem space” that his team is now addressing. “Designing the network topology, optimizing connections in a multi-tier multi-modal network, and coordinating all operational resources at Amazon scale is unprecedented,” he notes.

“Our new priority is ensuring that our own delivery trucks or cargo planes are as full as possible while also meeting our customer-delivery windows,” says Bhatia.

That problem space also illustrates why Amazon SCOT is so unique.

“We are solving some of the largest, most complex problems in operations using solutions entirely built in-house,” says Agiwal. “We have some of the best scientists, engineers and product managers in the world, working together and controlling their own destiny. We have the luxury of large and diverse data sets and the ability to innovate and experiment at a massive scale with immediate, measurable impact on customer experience and costs. It is truly gratifying.”

That complexity also explains why SCOT is so appealing to data scientists, economists, and machine learning scientists of all stripes.

“Our problem dimensionality is high and closed-form solutions are rarely applicable,” notes Maurer. “Our teams continually invent and implement new algorithms and evolve the fundamental structure of our systems as the physical network changes. SCOT is a great place for people who are drawn to exceptionally complex problem spaces and motivated by having high production impact.”

Related content

US, VA, Arlington
As a Survey Research Scientist within the Reputation Marketing & Insights team, your primary responsibility will be to help manage our employee communications research program, including a global tracking survey. The work will challenge you to be resourceful, think big while staying connected to the details, translate survey, focus group results, and advanced analytics into strategic direction, and embrace a high degree of change and ambiguity at speed. The scope and scale of what we strive to achieve is immense, but it is also meaningful and energizing. This is an individual contributor role. The right candidate possesses endless curiosity and passion for understanding employee perceptions and what drives them. You have end-to-end experience conducting qualitative research, robust large-scale surveys, campaign measurement, as well as advanced modeling skills to uncover perception drivers. You have proficiency in diving deep into large amounts of data and translating research into actionable insights/recommendations for internal communicators. You are an excellent writer who can effectively communicate data-driven insights and recommendations through written documents, presentations, and other internal communication channels. You are a creative problem-solver who seeks to deeply understand the business/communications so you can tailor research that informs stakeholder decision making and strategic messaging tactics. Key job responsibilities - Design and manage the execution of a global tracking survey focused on employee communications - Develop research to identify and test messages to drive employee perceptions - Use advanced statistical methodologies to better understand the relationship between key internal communications metrics and other related measures of perception (e.g., regression, structural equation modeling, latent growth curve modeling, Shapley analysis, etc.) - Develop causal and semi-causal measurement techniques to evaluate the perception impact of internal communications campaigns - Identify opportunities to simplify existing research processes and operate more nimbly - Engage in strategic discussions with internal partner teams to ensure our research generates actionable and on-point findings About the team This team sits within the CCR organization. Our focus is on conducting research that identifies messaging opportunities and informs communication strategies for Amazon as a brand.
US, CA, Santa Clara
Want to work on frontier, world class, AI-powered experiences for health customers and health providers? The Health Science & Analytics group in Amazon's Health Store & Technology organization is looking for a Senior Manager of Applied Science to lead a group of applied scientists and engineers to work hand in hand with physicians to build the future of AI-powered healthcare experiences. We have an ambitious roadmap which includes scaling recently launched products which are already delighting products and the opportunity to build disruptive, new experiences. This role will be responsible for leading the science and technology teams driving these key innovations on behalf of our customers. Key job responsibilities - Independently manage a team of scientists and engineers to sustainably deliver science driven products. - Define the vision and long-term technical roadmap to achieve multi-year business objectives. - Maintain and raise the science bar of the team’s deliverables and keep the broader Amazon Health Services organization apprised of the latest relevant technical developments in the field. - Work across business, clinical, and technical leaders to disambiguate product requirements and socialize progress towards key goals and deliverables. - Proactively identify risks and shape the technical roadmap in anticipation of industry trends in emerging AI subfields.
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You can work in San Francisco, CA or Seattle, WA. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
IN, KA, Bengaluru
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. Do you love problem solving? Are you looking for real world Supply Chain challenges? Do you have a desire to make a major contribution to the future, in the rapid growth environment of Cloud Computing? Amazon Web Services is looking for a highly motivated, Data Scientist to help build scalable, predictive and prescriptive business analytics solutions that supports AWS Supply Chain and Procurement organization. You will be part of the Supply Chain Analytics team working with Global Stakeholders, Data Engineers, Business Intelligence Engineers and Business Analysts to achieve our goals. We are seeking an innovative and technically strong data scientist with a background in optimization, machine learning, and statistical modeling/analysis. This role requires a team member to have strong quantitative modeling skills and the ability to apply optimization/statistical/machine learning methods to complex decision-making problems, with data coming from various data sources. The candidate should have strong communication skills, be able to work closely with stakeholders and translate data-driven findings into actionable insights. The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and ability to work in a fast-paced and ever-changing environment. Key job responsibilities 1. Demonstrate thorough technical knowledge on feature engineering of massive datasets, effective exploratory data analysis, and model building using industry standard time Series Forecasting techniques like ARIMA, ARIMAX, Holt Winter and formulate ensemble model. 2. Proficiency in both Supervised(Linear/Logistic Regression) and UnSupervised algorithms(k means clustering, Principle Component Analysis, Market Basket analysis). 3. Experience in solving optimization problems like inventory and network optimization . Should have hands on experience in Linear Programming. 4. Work closely with internal stakeholders like the business teams, engineering teams and partner teams and align them with respect to your focus area 5. Detail-oriented and must have an aptitude for solving unstructured problems. You should work in a self-directed environment, own tasks and drive them to completion. 6. Excellent business and communication skills to be able to work with business owners to develop and define key business questions and to build data sets that answer those questions 7. Work with distributed machine learning and statistical algorithms to harness enormous volumes of data at scale to serve our customers About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, NY, New York
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Bellevue
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! As a Quantitative Researcher on our team, you will be working at the intersection of mathematics, computer science, and finance, you will collaborate with a diverse team of engineers in a fast-paced, intellectually challenging environment where innovative thinking is encouraged and rewarded. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems, and value an inclusive team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Conduct statistical analyses on web-scale datasets to develop state-of-the-art multimodal large language models * Conceptualize and develop mathematical models, data sampling and preparation strategies to continuously improve existing algorithms * Identify and utilize data sources to drive innovation and improvements to our LLMs About the team We are passionate engineers and scientists dedicated to pushing the boundaries of innovation. We evaluate and represent the customer perspective through accurate benchmarking.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with world-class scientists and engineers to develop novel data, modeling and engineering solutions to support the responsible AI initiatives at AGI. Your work will directly impact our customers in the form of products and services that make use of audio technology. About the team While the rapid advancements in Generative AI have captivated global attention, we see these as just the starting point. Our team is dedicated to pushing the boundaries of what’s possible, leveraging Amazon’s unparalleled ML infrastructure, computing resources, and commitment to responsible AI principles. And Amazon’s leadership principle of customer obsession guides our approach, prioritizing our customers’ needs and preferences each step of the way.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team