Maximizing the efficiency of Amazon's own delivery networks

INFORMS talk explores techniques Amazon’s Supply Chain Optimization Technologies organization is testing to fulfill customer orders more efficiently.

Before Amazon built its own delivery network, Amazon package deliveries were completed by partner third-party carriers, like the U.S. Postal Service or UPS. Determining the most effective and frugal way to guarantee on-time delivery was simply a matter of comparing carrier rates.

But as customer demand for faster delivery grew, so did the need for more delivery options, and the Amazon Delivery Service Partner network was born. Amazon Delivery Service Partners are the final step in the complex logistics network that mediates between fulfillment centers (FCs), where inventory is stored, and customers’ doorsteps.

Related content
How the Amazon Logistics Research Science team guides important decisions related to last-mile delivery.

After leaving the FCs, packages move to sort centers, which aggregate shipments from multiple FCs, and then to delivery stations, where vans are loaded for “last mile” delivery to customers. Connecting all these different facilities are “lanes”, both air and ground. Optimizing first-party delivery means not only computing routes through this network but provisioning it — staffing fulfillment centers, procuring trucks, and the like — in advance, on the basis of demand forecasts.

Next week, at the annual meeting of the Institute for Operations Research and the Management Sciences (INFORMS), Andrea Qualizza, a senior principal scientist in Amazon’s Supply Chain Optimization Technologies (SCOT) organization, will present a talk titled “Fulfillment planning and execution in a first party network”, which introduces Amazon’s approach to solving this complex optimization problem.

That approach is the result of a multiyear effort coordinated by dozens of the company’s senior scientists, including Russell Allgor, a vice president and chief scientist, and Granville Paules, a senior principal scientist, both in Amazon’s Global Delivery organization; Qualizza; and Tim Tien, a senior principal technologist, and Narayan Venkatasubramanyan, a senior principal scientist, both of SCOT.

Related content
The Middle Mile team manages complexity and scale in making routing decisions across the company’s expansive transportation network.

“Back when Amazon relied entirely on third-party logistics, the responsibility ended with the injection of every shipment into one of the many hubs of the third-party carriers in a timely fashion,” Venkatasubramanyan explains. “Decisions on how and when to fulfill each demand were entirely based upon contractually agreed rate cards that specified costs at the shipment level.”

As the network evolves, Venkatasubramanyan says, “the first-party regime poses two new challenges, one relatively obvious but hard, the other not so obvious and harder. The first challenge relates to building, provisioning, and staffing the outbound network based on a forecast of customer demand. The second is how to use the outbound network we have built to respond to actual customer demand, which includes making the fastest offers to customers and fulfilling the resulting promises efficiently and reliably.”

The fulfillment plan

“The first step in optimizing first-party delivery,” Qualizza says, “is the development of a fulfillment plan. This requires solving a sequence of optimization models that take into account demand forecasts, the cost of acquiring transportation resources, and staffing for our outbound network.”

Related content
How Customer Order and Network Density OptimizeR (CONDOR) has led to improved delivery routes.

“As we become more certain of our needs and our capability to acquire certain resources, our plans need to adjust accordingly,” Venkatasubramanyan adds. “With the increasing reliance on a first-party network, we now have to plan for the right amount of capacity in the outbound network — including the buffer capacity needed to cover for the uncertainty in demand. That’s analogous to how we manage the safety stock of inventory we carry in our FCs.

“That brings up another consideration, which is that our plans can't be too different from what we said yesterday. At times, that can post a challenge in the planning process, but it allows us to build a network that becomes comfortable with processes and ultimately more efficient than having constant change.”

Execution

The second step in optimizing first-party delivery is execution. Once a plan is in place, Qualizza explains, it needs to be “communicated to execution systems that in turn decide how we make delivery promises to our customers, what items go in what box, which warehouse handles it, and which path each box will take to get to the customer.”

That communication, Qualizza explains, happens at two levels. At a high level, the plan specifies origin-destination targets — that is, what percentage of the demand in a given locality should be met by a given fulfillment center.

“For example, within a zip code, how much of the demand do we plan to fulfill from warehouse one, warehouse two, warehouse three?” Qualizza says. “Likely, warehouses nearby in your region will aim to fulfill most of your demand. That depends, of course, on the network topology, connectivity, demand, and so on, which are accounted for during planning.”

Origin-destination flow targets.png
An example of origin-destination targets for a particular locality.

At a lower level, the plan specifies time-based resource-level trajectories, or the assignment of fulfillment responsibilities to particular facilities at particular times. These trajectories can, for instance, help preserve resources that may be uniquely positioned to serve faster demand.

“The resources we're talking about here are, for instance, what we call a lane, which is a way to get from a node to another node,” Qualizza says. “Nodes could be warehouses, sort centers, air hubs, or delivery stations. The lane typically consists of one or more trucks, scheduled over time. It could be one truck at the end of the day. It could be three trucks scattered throughout the day. Trajectories are meant to assign the right volume to actually fill the truck in a way that the truck does not go out empty, nor do we leave a handful of packages on the dock.”

Resource-level trajectories.png
An example of a set of resource trajectories. Note that actual assignments of deliveries to particular resources may deviate from the planned trajectories.

Targets and trajectories are computed jointly during the planning phase and are consistent with one another. They are the main point of contact between planning and fulfillment execution.

Executing a fulfillment plan is the job of individual facilities within the delivery network. The resourcing decisions at those facilities have already been made based on demand forecasts; the greater the uncertainty of those forecasts, the more buffering the resource provision requires.

Related content
Russell Allgor is recognized for outstanding lifetime achievement in operations research and the management sciences.

“We are going to have online controllers that make decisions in an online fashion — as demand materializes, or as page views materialize, or as packages approach the SLAM [scan, label, apply, manifest] line, which is responsible for applying a label to a package within a few hundreds of milliseconds,” Qualizza explains. “The online controllers operate under strict time latencies and, as a consequence, operate with a limited set of information when making decisions.

"To aid online controllers’ decisions, input steering signals direct work toward resources that are underutilized with respect to the plan, as opposed to resources where we are above the plan.”

Related content
Models adapted from information retrieval deal well with noisy GPS input and can leverage map information.

Even with this additional steering mechanism, online controllers make decisions one at a time, which could lead to inefficiencies. A decision made at a particular point in time — say, where to fulfill a particular demand or how to route a particular shipment — might later turn out to be suboptimal. To identify and resolve these inefficiencies, the SCOT researchers pair online controllers with offline controllers that can re-evaluate all demand at once and revise demand decisions whose processing has not yet begun.

“If you think of this whole thing as analogous to a jigsaw puzzle, the plan is like the picture on the box,” Venkatasubramanyan says. “When customers are placing orders, they're giving you one piece of the puzzle at a time. They are not handing you the pieces in the right order. In some cases, they’re not even handing you the right pieces. And what we're trying to do is re-create that picture, because everyone else has relied on it — the people who wrote contracts on trucks, the people who hired associates three weeks in advance based on the picture, et cetera. The whole idea is to create a plan and get everyone to pull in the same direction.”

Related content

US, WA, Seattle
Note that this posting is for a handful of teams within Amazon Robotics. Teams include: Robotics, Computer Vision, Machine Learning, Optimization, and more.Are you excited about building high-performance robotic systems that can perceive and learn to help deliver for customers? The Amazon Robotics team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.Amazon Robotics is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. We will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Come join us!A day in the lifeAs an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Bellevue
The Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Data Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. The Research Science team at Amazon Robotics is seeking interns with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, planning/scheduling, and reinforcement learning. As an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, WA, Bellevue
Employer: Amazon.com Services LLCPosition: Research Scientist IILocation: Bellevue, WA Multiple Positions Available1. Research, build and implement highly effective and innovative methods in Statistical Modeling, Machine Learning, and other quantitative techniques such as operational research and optimization to deliver algorithms that solve real business problems.2. Take initiative to scope and plan research projects based on roadmap of business owners and enable data-driven solutions. Participate in shaping roadmap for the research team.3. Ensure data quality throughout all stages of acquisition and processing of the data, including such areas as data sourcing/collection, ground truth generation, data analysis, experiment, evaluation and visualization etc.4. Navigate a variety of data sources, understand the business reality behind large-scale data and develop meaningful science solutions.5. Partner closely with product or/and program owners, as well as scientists and engineers in cross-functional teams with a clear path to business impact and deliver on demanding projects.6. Present proposals and results in a clear manner backed by data and coupled with conclusions to business customers and leadership team with various levels of technical knowledge, educating them about underlying systems, as well as sharing insights.7. Perform experiments to validate the feature additions as requested by domain expert teams.8. Some telecommuting benefits available.The pay range for this position in Bellevue, WA is $136,000-$184,000 (yr); however, base pay offered may vary depending on job-related knowledge, skills, and experience. A sign-on bonus and restricted stock units may be provided as part of the compensation package, in addition to a full range of medical, financial, and/or other benefits, dependent on the position offered. This information is provided by the Washington Equal Pay Act. Base pay information is based on market location. Applicants should apply via Amazon's internal or external careers site.#0000
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000