An Amazon employee is seen making a delivery while an electric delivery van is parked behind him on a residential street in Los Angeles
When Amazon announced it would purchase 100,000 custom electric delivery vehicles, a team of scientists within the Amazon Logistics Research organization took on the challenge of determining the best strategy for deploying them.
About Amazon

The science of operations planning under uncertainty

How the Amazon Logistics Research Science team guides important decisions related to last-mile delivery.

When Amazon announced it would purchase 100,000 custom electric delivery vehicles as part of The Climate Pledge, a team of scientists within the Amazon Logistics (AMZL) Research organization took on the challenge of determining the best strategy for deploying them. Based on sophisticated models that simulate Amazon’s shipments and external parameters like power availability in each city, the team is developing a plan to gradually electrify Amazon’s entire fleet.

This is just one of many projects the AMZL Research Science team is tackling related to last-mile delivery. Last mile, as the name implies, is the last leg of the journey of a product to a customer’s doorstep. The team develops models to predict shipments per route (SPR) and distribution, which is the average number of packages delivered by a single driver in a given city on a given day (weeks to years in the future). These models help to predict the number and the different sizes of vans the company should purchase to meet the predicted demands.

“With these complex models we develop, we have been influencing the company’s investment in vehicles, Delivery Service Partners, and their drivers,” says Rohit Malshe, a principal research scientist at Amazon.

How to forecast when everything is changing

There are multiple scientific challenges involved in developing these models given the dynamic nature of Amazon’s operations.

“One of these challenges is that our volume keeps growing. In general, as the volume grows, the shipments per route will also increase, but not linearly,” explains Abhilasha Katariya, a senior research scientist on the team. New delivery stations are frequently launched, leading to several changes in the geographical area that each station covers. Stations may incorporate different types of vehicles and modify their operation hours, which also impacts how much they can deliver. Additionally, road networks are subject to alterations as well, impacting driving time.

Left to right, Rohit Malshe, principal research scientist; Abhilasha Katariya, senior research scientist; and Natarajan Gautam, an Amazon Scholar and a professor at Texas A&M University, are all part of the Amazon Logistics Research Science team.
Left to right, Rohit Malshe, principal research scientist; Abhilasha Katariya, senior research scientist; and Natarajan Gautam, an Amazon Scholar and a professor at Texas A&M University, are all part of the Amazon Logistics Research Science team.

The team’s scientists must develop models that can handle the variability and complexity. To do that, they use a bottoms-up approach that starts at the zip code level. “This creates a foundation where any changes in the stations’ jurisdiction can be taken into consideration directly,” says Katariya.

Pure machine-learning approaches are not adequate because the team must frequently make predictions based on new scenarios, for which there is no training data available. To compensate for the lack of training data, the team develops models that combine machine learning and physics-based models that have an optimization component which helps to take into account new variables.

For example, if a large van is added to an Amazon station that previously only worked with small and medium vans, there is no training data to inform the model. “But because the core of the model uses analytical and optimization components, we can still predict the shipments per route for a larger van,” says Katariya.

“If you think about a machine learning model, typically interpolating is very easy. But, in our case, we typically want to extrapolate because we're always getting more volume,” says Natarajan Gautam, an Amazon Scholar and a professor at Texas A&M University. “Using historical data to extrapolate is generally not recommended in machine learning, because you haven’t seen those things in the past.”

This is where the physics-based model comes in handy, although a pure physics-based model also wouldn’t work, notes Gautam, because there are so many simplifying assumptions that need to be made to obtain an analytically tractable model. “We want to get the best of both worlds, in some sense. We all want something that adequately represents what is observed, but we also want to be able to extrapolate when not observed.”

Another strategy the team employs to deal with situations where the parameters are constantly changing is to run the same model over and over again to do a type of course correction. “Just run the model every month, so that all the parameters that are changing are learned by the model, and then you are always getting the latest and greatest picture you should expect. This way you have a good model that handles all types of situations, even the ones where no data exists,” says Malshe.

The science team works very closely with people on the ground, both in station and on the road, to perfect these models. They frequently visit the delivery stations and interview the drivers whenever an opportunity arrives. “We make visits to stations and do ride-alongs so that we stay connected with how the business is evolving,” says Katariya.  

In one of these meetings, Gautam says, station employees said their results were different from what the models were predicting. “We went back to the drawing board, looked at the code and the data they were getting ,and took a deep dive to find what was causing the problem”.

They realized the station started delivering to a new zip code, but it didn’t perform the same way the previous station did. That explained the difference between what the model was observing and the real-life data. Having a close connection with operations allowed them to identify the problem and adjust their model.

Dealing with COVID-19 disruptions

For big decisions like vehicle purchases, the AMZL Research Science team forecasts on a 16-month horizon. However, when the team predicted the number of vans needed for 2020, their model didn’t consider the COVID-19 pandemic. “Suddenly there was so much more package demand that all our forecasts were basically incorrect,” says Malshe.

An Amazon employee loads an electric delivery van inside a delivery station in Los Angeles.
For big decisions like vehicle purchases, the AMZL Research Science team forecasts on a 16-month horizon.
About Amazon

He says, when situations like these arise, the first thing the team does is to upgrade the forecasts to incorporate the additional volume. They also perform scenario analyses to check, for example, if the vehicles that had already been budgeted and procured would serve the purpose. Fortunately, in this case, because these decisions are made so far in advance, the team intentionally overbudgeted to account for uncertainties. “Luckily enough, the previous year, we had spent a lot of money on bigger vehicles, and they were able to absorb the additional package volume. So, when we ran these forecasts, we figured out we were in a good spot to be able to handle such changes,” says Malshe.

“Another risk mitigation lever we applied is to make sure there is enough storage space in the delivery stations,” says Malshe. “We made sure we looked into every possible parameter to optimize for vehicles and their placement in various cities, and their deployment to various Delivery Service Partner companies so that they are utilized to the best of our capabilities.”

‘Many challenges and interesting solutions’

The electrification of Amazon’s fleet presents its own set of challenges. Some of these include how to make sure batteries in the vehicles don’t run out of charge on the road; how to optimize electricity and power consumption; and how to account for extreme weather, long trips and hilly areas. “We will keep learning on all of these items as we go forward, and each year we will come up with more innovations to overcome any barriers,” says Malshe.  

For Malshe, the diversity of the scientists working on the team – which includes people with various backgrounds, industries, educations, and skill sets – is what contributes to its success in tackling these unresolved challenges.

"We have people on our team who are extremely data savvy.  We have team members who know  SQL coding in depth and some are extremely good in Python coding. Other team members have expertise in areas like machine learning, optimization, pure modeling, Monte Carlo simulations and what not," says Malshe, who is himself a chemical engineer with experience in logistics.

 “Usually two to three people are working on every project. It divides and conquers various tasks and ultimately gives everyone an opportunity to do valuable work,” he says.

In addition to the team’s range of expertise, Katariya says another team success factor is its ability to collaborate on a wide range of problems. “Each problem has a different challenge, some have a very simple mathematical solution, but are very heavy on the implementation side, and others may require more complex models from a mathematical perspective, but are easier to implement.”

And there are many more challenges to be tackled. In fact, Gautam says, some of his peers have yet to fully grasp the challenges involved in this field of research.

“A lot of people think of last mile as solving a vehicle routing problem. But we do a lot more than that,” he says. “There are so many challenges and interesting solutions that you just can’t take it off the shelf, you really have to invent as you go along. There are tremendous opportunities to do that here and the range of challenges we get to address is what makes being involved with this team so professionally rewarding.”

The team is currently hiring research and data scientists and is looking for experienced researchers to consider applying.

Related content

GB, London
Amazon Advertising is looking for a Data Scientist to join its brand new initiative that powers Amazon’s contextual advertising products. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies. The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety, Contextual data processing and classification. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are looking for a dynamic, innovative and accomplished Data Scientist to work on data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you an experienced user of sophisticated analytical techniques that can be applied to answer business questions and chart a sustainable vision? Are you exited by the prospect of communicating insights and recommendations to audiences of varying levels of technical sophistication? Above all, are you an innovator at heart and have a track record of resolving ambiguity to deliver result? As a data scientist, you help our data science team build cutting edge models and measurement solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, define metrics, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Define a long-term science vision for contextual-classification tech, driven fundamentally from the needs of our advertisers and publishers, translating that direction into specific plans for the science team. Interpret complex and interrelated data points and anecdotes to build and communicate this vision. * Collaborate with software engineering teams to Identify and implement elegant statistical and machine learning solutions * Oversee the design, development, and implementation of production level code that handles billions of ad requests. Own the full development cycle: idea, design, prototype, impact assessment, A/B testing (including interpretation of results) and production deployment. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. We are open to hiring candidates to work out of one of the following locations: London, GBR
JP, 13, Tokyo
We are seeking a Principal Economist to be the science leader in Amazon's customer growth and engagement. The wide remit covers Prime, delivery experiences, loyalty program (Amazon Points), and marketing. We look forward to partnering with you to advance our innovation on customers’ behalf. Amazon has a trailblazing track record of working with Ph.D. economists in the tech industry and offers a unique environment for economists to thrive. As an economist at Amazon, you will apply the frontier of econometric and economic methods to Amazon’s terabytes of data and intriguing customer problems. Your expertise in building reduced-form or structural causal inference models is exemplary in Amazon. Your strategic thinking in designing mechanisms and products influences how Amazon evolves. In this role, you will build ground-breaking, state-of-the-art econometric models to guide multi-billion-dollar investment decisions around the global Amazon marketplaces. You will own, execute, and expand a research roadmap that connects science, business, and engineering and contributes to Amazon's long term success. As one of the first economists outside North America/EU, you will make an outsized impact to our international marketplaces and pioneer in expanding Amazon’s economist community in Asia. The ideal candidate will be an experienced economist in empirical industrial organization, labour economics, or related structural/reduced-form causal inference fields. You are a self-starter who enjoys ambiguity in a fast-paced and ever-changing environment. You think big on the next game-changing opportunity but also dive deep into every detail that matters. You insist on the highest standards and are consistent in delivering results. Key job responsibilities - Work with Product, Finance, Data Science, and Data Engineering teams across the globe to deliver data-driven insights and products for regional and world-wide launches. - Innovate on how Amazon can leverage data analytics to better serve our customers through selection and pricing. - Contribute to building a strong data science community in Amazon Asia. We are open to hiring candidates to work out of one of the following locations: Tokyo, 13, JPN
DE, BE, Berlin
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Berlin, BE, DEU | Berlin, DEU
DE, BY, Munich
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Munich, BE, DEU | Munich, BY, DEU | Munich, DEU
IT, MI, Milan
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Milan, MI, ITA
ES, M, Madrid
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Madrid, ESP | Madrid, M, ESP
US, TX, Austin
The role is available Arlington, Virginia (may consider New York, NY, Los Angeles, CA, or Toronto, Canada). Calling all inventors to work on exciting new opportunities in Sponsored Products. Amazon is building a world class advertising business and defining and delivering a collection of self-service performance advertising products that drive discovery and sales of merchandise. Our products are strategically important to our Retail and Marketplace businesses, driving long-term growth. Sponsored Products (SP) helps merchants, retail vendors, and brand owners grows incremental sales of their products sold on Amazon through native advertising. SP achieves this by using a combination of machine learning, big data analytics, ultra-low latency high-volume engineering systems, and quantitative product focus. We are a highly motivated, collaborative and fun-loving group with an entrepreneurial spirit and bias for action. You will join a newly-founded team with a broad mandate to experiment and innovate, which gives us the flexibility to explore and apply scientific techniques to novel product problems. You will have the satisfaction of seeing your work improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact. More importantly, you will have the opportunity to broaden your technical skills, work with Generative AI, and be a science leader in an environment that thrives on creativity, experimentation, and product innovation. We are open to hiring candidates to work out of one of the following locations: Austin, TX, USA
US, CA, San Diego
The Private Brands team is looking for an Applied Scientist to join the team in building science solutions at scale. Our team applies Optimization, Machine Learning, Statistics, Causal Inference, and Econometrics/Economics to derive actionable insights. We are an interdisciplinary team of Scientists, Engineers, and Economists and primary focus on building optimization and machine learning solutions in supply chain domain with specific focus on Amazon private brand products. Key job responsibilities You will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable optimization solutions and ML models. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and economists. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. We are particularly interested in candidates with experience in predictive and machine learning models and working with distributed systems. Academic and/or practical background in Machine Learning are particularly relevant for this position. Familiarity and experience in applying Operations Research techniques to supply chain problems is a plus. To know more about Amazon science, Please visit https://www.amazon.science We are open to hiring candidates to work out of one of the following locations: San Diego, CA, USA | Seattle, WA, USA
LU, Luxembourg
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Luxembourg, LUX
GB, London
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis Basic Qualifications -Masters in Computer Science, Machine Learning, Robotics or equivalent with a focus on Computer Vision. -2+ years of experience of building machine learning models for business application -Broad knowledge of fundamentals and state of the art in computer vision and machine learning -Strong coding skills in two or more programming languages such as Python or C/C++ -Knowledge of fundamentals in optimization, supervised and reinforcement learning -Excellent problem-solving ability Preferred Qualifications -PhD and 4+ years of industry or academic applied research experience applying Computer Vision techniques and developing Computer vision algorithms -Depth and breadth in state-of-the-art computer vision and machine learning technologies and experience designing and building computer vision solutions -Industry experience in sensor systems and the development of production computer vision and machine learning applications built to use them -Experience developing software interfacing to AWS services -Excellent written and verbal communication skills with the ability to present complex technical information in a clear and concise manner to a variety of audiences -Ability to work on a diverse team or with a diverse range of coworkers -Experience in publishing at major Computer Vision, ML or Robotics conferences or Journals (CVPR, ICCV, ECCV, NeurIPS, ICML, IJCV, ICRA, IROS, RSS,...) We are open to hiring candidates to work out of one of the following locations: London, GBR