Line Haul at DS.jpeg
Amazon Transportation Services' Middle Mile team “has made longstanding contributions to operations research and analytics for decades, and their impact has been widely noted and recognized,” said Erica Klampfl, 2021 INFORMS Prize committee chair.
Credit: AboutAmazon.com

How Amazon's Middle Mile team helps packages make the journey to your doorstep

The Middle Mile team manages complexity and scale in making routing decisions across the company’s expansive transportation network.

Amazon Transportation Services’ Middle Mile team develops routing solutions to move customer orders from its vendors and fulfillment centers to its network of sortation centers, air facilities, and delivery stations in the most efficient way possible.

Watch Amazon's trucks line up outside a facility

Over the past five years, the team has played a critical role in helping Amazon deliver on increasingly ambitious goals — from two-day and one-day deliveries for Prime customers, to one-hour delivery windows for services like Prime Now.

Recently, INFORMS, the leading international association for operations research and analytics professionals, recognized these achievements by awarding Amazon the 2021 INFORMS Prize. The award recognizes the effective integration of operations research and analytics into organizational decision making.

The INFORMS prize logo is shown atop the Amazon logo
The INFORMS prize "is awarded for effective integration of advanced analytics and operations research/management sciences (OR/MS) in an organization."
INFORMS.org

“Amazon has made longstanding contributions to operations research and analytics for decades, and their impact has been widely noted and recognized,” said Erica Klampfl, 2021 INFORMS Prize committee chair. “Amazon is truly deserving of this prestigious prize, and the entire O.R. and analytics community joins INFORMS in thanking them for all they have done and continue to do.”

Over the past five years, the team has doubled down on scientific innovation and operations research to move millions of packages globally through Amazon’s transportation network. The INFORMS award serves as a reminder not just of the work the Middle Mile team has done at Amazon, but also how far they have come.

An extremely complex problem

Given the high number of variables involved in arriving at optimal routing decisions, complexity is a constant for Amazon’s Middle Mile team.

For every customer order, Amazon’s routing algorithms must determine the best path through the network to move the product between suppliers, fulfillment centers, sorting facilities, and delivery stations, to quickly, safely, and cost-effectively reach customers.

They must evaluate the merits of each transportation option — surface, rail, air, or maritime — and determine the most effective route.  The algorithms also determine an optimal or near-optimal route to send the order to a facility where it can be sorted and handed off for delivery. Finally, all schedules have to be designed in a way that optimizes for safety and complies with government regulations such as rest breaks, hours of service, and other requirements.

Our trucking network alone presents us with over ten octovigintillion possible routing solutions.
Tim Jacobs

“To give you an idea of the scale and complexity we’re managing, our trucking network alone presents us with over 1088 or ten octovigintillion — possible routing solutions,” says Tim Jacobs, director of Middle Mile Research Science and Optimization. “This is an especially large number, when you consider that there are 1082 atoms in the visible universe.”

And that’s just for the trucking network.

When a product is ordered on the Amazon Store, there are several ways it can make its way from a fulfillment center to the customer’s residence.

There’s the (relatively) straightforward approach: The product is sent from a fulfillment center to a sortation center and to a delivery station, at which point it is placed on a vehicle for delivery to the customer’s residence.

There are also more involved scenarios, such as when customers place time-sensitive orders for items stored in geographically distant fulfillment centers. In these cases, the products are often delivered using a combination of Amazon’s air cargo network along with the surface network to meet the customer’s delivery timelines.

When Jacobs joined Amazon in 2016, the majority of the company’s loads were carried by a relatively small number of large third-party carriers that managed the truck assignments and routings. Since then, the Middle Mile team has helped to develop new ways to manage its transportation network, including by routing a growing number of medium and small carriers using Amazon’s own technology and algorithms, enabling more efficient management and visibility of the transportation network, which in turn helps Amazon get packages to customers faster and more efficiently.

That effort began, in part, by expanding the team.

In the beginning: Improving Amazon’s surface operations

In 2016, Mauricio Resende was among just a few scientists in Amazon’s Middle Mile team — a number that has since grown significantly.

Prior to Amazon, Resende worked as a scientist at AT&T Labs focused on combinatorial optimization. At its essence, combinatorial optimization involves using mathematical methods to identify the best decisions for a problem from a large set of candidate solutions.

“In 2016, Amazon’s surface routing decisions were made using a basic local search algorithm,” Resende says. “Loads were allocated in advance. The process was largely iterative, and we drove small improvements to the algorithm week over week.”

Tim Jacobs, director of Middle Mile Research Science and Optimization; Mauricio Resende, principal research scientist; and Nilay Noyan, principal research scientist
Named among others in Amazon's 2021 INFORMS Prize were (from left) Tim Jacobs, director of Middle Mile Research Science and Optimization, Mauricio Resende, principal research scientist, and Nilay Noyan, principal research scientist.

Crucially, in order to automate routing decisions, the algorithms and systems needed to account for differing constraints and inputs that have a profound impact on routing decisions, such as the nuances of different regulatory agencies in each country.

The system also needed to understand the storage and throughput constraints of each facility by considering factors like operating hours or whether parking slips might be required. So, the team worked to model and eliminate those system blind spots.

“We developed more advanced data structures and algorithmic techniques to account for these constraints as we designed routing schedules,” says Resende.

Resende provides the example of a sequence evaluator designed by Amazon’s Middle Mile research team. The evaluator was designed to help find the most effective routing solution for a pre-determined objective function, such as cost, or number of trips with empty loads.

The evaluator computed the cost for a presented route. It kept working through possible changes to the route until a near-optimal route was found. This solution was then perturbed — routes were deliberately eliminated and new deliveries were fed into the algorithm. The task was then repeated. In this manner, the algorithm progressed toward an iteratively better solution.

Through methods such as these, Resende and his fellow researchers drove a significant reduction in surface transportation costs.

When you are working with such a large universe of possibilities, you have to be incredibly efficient in how you formulate the problem.
Mauricio Resende

“When you are working with such a large universe of possibilities, you have to be incredibly efficient in how you formulate the problem,” says Resende. “You then have to be efficient in designing algorithms to solve that formulation of the problem.”

The Middle Mile team also faced situations where it had to route goods that hadn’t been accounted for in the demand forecasts that are an input to its routing plans. While future demand can be predicted, there are still many unknowns at the planning stage. A good example is spikes in demand for new products, or products that become unexpectedly popular.

To cope with demand variability, the Middle Mile team developed a truckload supply load board with dynamic pricing. The load board, powered by a number of machine learning algorithms coupled with mathematical optimization models, allowed Amazon to expand its delivery network by accessing the available capacity of pre-screened carriers operating in a geographical area or lane.

The load board dynamically sets prices for loads that are currently available. Carriers can review available loads simultaneously. Interested carriers can then accept the load at the offered price in real-time. This arrangement also helps carriers optimize the efficiency of their drivers’ schedules.

As Amazon drove improvements to its surface network, the Middle Mile team also leveraged scientific innovation to design routing solutions for its air cargo service, which has expanded rapidly since launching in 2016.

Developing algorithms to manage Amazon’s fleet of contracted airline partners

Nilay Noyan joined the company as a principal research scientist in September 2019. Prior to Amazon, Noyan was a professor of industrial engineering at Sabanci University in Istanbul.

Broadly speaking, the air routing problems are similar to those for surface networks. However, there are completely different constraints associated with airlines.
Nilay Noyan

“Broadly speaking, the air routing problems are similar to those for surface networks,” says Noyan. “However, there are completely different constraints associated with airlines.”

These include regulatory constraints, lead times for procuring aircraft, the impact of fluctuating fuel prices, and resources required to manage airline contracts. Flight schedule designs also need to ensure that there is sufficient time for routine line maintenance, airplane refueling, and the loading and unloading of packages.

Arrival and departure times must be aligned with available capacity and resources to ensure packages are processed on time. To further complicate matters, airline schedules have to be aligned with those of the surface network so there are trucks waiting on the ground to carry packages to the next destination.

Over the past four years, the Middle Mile Planning Research and Optimization Science team has developed and implemented more than a dozen optimization and machine learning models to build and operate the air transport network. These tools help the team arrive at the most optimal decisions in areas such as flight schedule design, fuel management, package flow planning, maintenance planning, and disruption recovery.

Noyan says machine learning also plays an important role in helping the Middle Mile team solve for problems that are inherently stochastic or unpredictable in nature.

Amazon Prime Air Boeing 767
Over the past four years, the Middle Mile Planning Research and Optimization Science team has developed and implemented more than a dozen optimization and machine learning models to build and operate the air transport network.
Chad Slattery

“Deviations from the execution plans are unavoidable in case of unexpected disruption events due to weather, unscheduled maintenance, and crew-related delays,” says Noyan. “Machine-learning-based prediction methods help us react to these unexpected situations, and adapt quickly so that we can meet our delivery promises to customers.”

In addition to helping Amazon adapt to unpredictable events, Jacobs sees machine learning playing an increasingly important role in helping Amazon more effectively unify the worlds of surface, air, rail and maritime networks for both network design and day of operations.  

“At Amazon, we work back backwards from the customer,” he says. “We don’t think of each mode of transport separately, as is common in the industry. Instead, we are continually working to combine these areas effectively, so that the way we plan and the way we operate the network are consistent.”

Related content

US, WA, Seattle
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Join us at the forefront of applied robotics and AI, and be a part of the team that's reshaping the future of intelligent systems. Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers like Pieter Abbeel, Rocky Duan, and Peter Chen to lead key initiatives in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, scence understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between cutting-edge research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives in robotics foundation models, driving breakthrough approaches through hands-on research and development in areas like open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Guide technical direction for specific research initiatives, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with engineering teams to optimize and scale models for real-world applications - Influence technical decisions and implementation strategies within your area of focus A day in the life - Develop and implement novel foundation model architectures, working hands-on with our extensive compute infrastructure - Guide fellow scientists in solving complex technical challenges, from sim2real transfer to efficient multi-task learning - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster - Mentor team members while maintaining significant hands-on contribution to technical solutions Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team, led by pioneering AI researchers Pieter Abbeel, Rocky Duan, and Peter Chen, is building the future of intelligent robotics through groundbreaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IL, Haifa
We’re looking for a Principal Applied Scientist in the Personalization team with experience in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problem Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to drive customer awareness for Amazon’s own brands and help customers discover products they love. Private Brands Discovery is an interdisciplinary team of Scientists and Engineers, who incubate and build disruptive solutions using cutting-edge technology to solve some of the toughest science problems at Amazon. To this end, the team employs methods from Natural Language Processing, Deep learning, multi-armed bandits and reinforcement learning, Bayesian Optimization, causal and statistical inference, and econometrics to drive discovery across the customer journey. Our solutions are crucial for the success of Amazon’s own brands and serve as a beacon for discovery solutions across Amazon. This is a high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and engineers. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.. With a focus on bias for action, this individual will be able to work equally well with Science, Engineering, Economics and business teams. Key job responsibilities - 5+ yrs of relevant, broad research experience after PhD degree or equivalent. - Advanced expertise and knowledge of applying observational causal interference methods - Strong background in statistics methodology, applications to business problems, and/or big data. - Ability to work in a fast-paced business environment. - Strong research track record. - Effective verbal and written communications skills with both economists and non-economist audiences.
DE, Aachen
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The AWS Marketplace & Partner Services Science team is hiring an Applied Scientist to develop science products that support AWS initiatives to grow AWS Partners. The team is seeking candidates with strong background in machine learning and engineering, creativity, curiosity, and great business judgment. As an applied scientist on the team, you will work on targeting and lead prioritization related AI/ML products, recommendation systems, and deliver them into the production ecosystem. You are comfortable with ambiguity and have a deep understanding of ML algorithms and an analytical mindset. You are capable of summarizing complex data and models through clear visual and written explanations. You thrive in a collaborative environment and are passionate about learning. Key job responsibilities - Work with scientists, product managers and engineers to deliver high-quality science products - Experiment with large amounts of data to deliver the best possible science solutions - Design, build, and deploy innovative ML solutions to impact AWS Co-Sell initiatives About the team The AWS Marketplace & Partner Services team is the center of Analytics, Insights, and Science supporting the AWS Specialist Partner Organization on its mission to provide customers with an outstanding experience while working with AWS partners. The Science team supports science models and recommendation systems that are deployed directly to AWS Customers, AWS partners, and internal AWS Sellers.
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists and engineers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! Key job responsibilities We seek strong Applied Scientists with domain expertise in machine learning and deep learning, transformers, generative models, large language models, computer vision and multimodal models. You will devise innovative solutions at scale, pushing the technological and science boundaries. You will guide the design, modeling, and architectural choices of state-of-the-art large language models and multimodal models. You will devise and implement new algorithms and new learning strategies and paradigms. You will be technically hands-on and drive the execution from ideation to productionization. You will work in collaborative environment with other technical and business leaders, to innovate on behalf of the customer.
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You’ll be working with talented scientists, engineers, and technical program managers (TPM) to innovate on behalf of our customers. If you’re fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey!
US, CA, East Palo Alto
The Customer Engagement Technology team leads AI/LLM-driven customer experience transformation using task-oriented dialogue systems. We develop multi-modal, multi-turn, goal-oriented dialog systems that can handle customer issues at Amazon scale across multiple languages. These systems are designed to adapt to changing company policies and invoke correct APIs to automate solutions to customer problems. Additionally, we enhance associate productivity through response/action recommendation, summarization to capture conversation context succinctly, retrieving precise information from documents to provide useful information to the agent, and machine translation to facilitate smoother conversations when the customer and agent speak different languages. Key job responsibilities Research and development of LLM-based chatbots and conversational AI systems for customer service applications. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. 4. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, MA, Boston
The Amazon Dash Cart team is seeking a highly motivated Research Scientist (Level 5) to join our team that is focused on building new technologies for grocery stores. We are a team of scientists invent new algorithms (especially artificial intelligence, computer vision and sensor fusion) to improve customer experiences in grocery shopping. The Amazon Dash Cart is a smart shopping cart that uses sensors to keep track of what a shopper has added. Once done, they can bypass the checkout lane and just walk out. The cart comes with convenience features like a store map, a basket that can weigh produce, and product recommendations. Amazon Dash Cart’s are available at Amazon Fresh, Whole Foods. Learn more about the Dash Cart at https://www.amazon.com/b?ie=UTF8&node=21289116011. Key job responsibilities As a research scientist, you will help solve a variety of technical challenges and mentor other engineers. You will play an active role in translating business and functional requirements into concrete deliverables and build quick prototypes or proofs of concept in partnership with other technology leaders within the team. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. About the team Amazon Dash cart allows shoppers to checkout without lines — you just place the items in the cart and the cart will take care of the rest. When you’re done shopping, you leave the store through a designated dash lane. We charge the payment method in your Amazon account as you walk through the dash lane and send you a receipt. Check it out at https://www.amazon.com/b?ie=UTF8&node=21289116011. Designed and custom-built by Amazonians, our Dash cart uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning.