Line Haul at DS.jpeg
Amazon Transportation Services' Middle Mile team “has made longstanding contributions to operations research and analytics for decades, and their impact has been widely noted and recognized,” said Erica Klampfl, 2021 INFORMS Prize committee chair.
Credit: AboutAmazon.com

How Amazon's Middle Mile team helps packages make the journey to your doorstep

The Middle Mile team manages complexity and scale in making routing decisions across the company’s expansive transportation network.

Amazon Transportation Services’ Middle Mile team develops routing solutions to move customer orders from its vendors and fulfillment centers to its network of sortation centers, air facilities, and delivery stations in the most efficient way possible.

Watch Amazon's trucks line up outside a facility

Over the past five years, the team has played a critical role in helping Amazon deliver on increasingly ambitious goals — from two-day and one-day deliveries for Prime customers, to one-hour delivery windows for services like Prime Now.

Recently, INFORMS, the leading international association for operations research and analytics professionals, recognized these achievements by awarding Amazon the 2021 INFORMS Prize. The award recognizes the effective integration of operations research and analytics into organizational decision making.

The INFORMS prize logo is shown atop the Amazon logo
The INFORMS prize "is awarded for effective integration of advanced analytics and operations research/management sciences (OR/MS) in an organization."
INFORMS.org

“Amazon has made longstanding contributions to operations research and analytics for decades, and their impact has been widely noted and recognized,” said Erica Klampfl, 2021 INFORMS Prize committee chair. “Amazon is truly deserving of this prestigious prize, and the entire O.R. and analytics community joins INFORMS in thanking them for all they have done and continue to do.”

Over the past five years, the team has doubled down on scientific innovation and operations research to move millions of packages globally through Amazon’s transportation network. The INFORMS award serves as a reminder not just of the work the Middle Mile team has done at Amazon, but also how far they have come.

An extremely complex problem

Given the high number of variables involved in arriving at optimal routing decisions, complexity is a constant for Amazon’s Middle Mile team.

For every customer order, Amazon’s routing algorithms must determine the best path through the network to move the product between suppliers, fulfillment centers, sorting facilities, and delivery stations, to quickly, safely, and cost-effectively reach customers.

They must evaluate the merits of each transportation option — surface, rail, air, or maritime — and determine the most effective route.  The algorithms also determine an optimal or near-optimal route to send the order to a facility where it can be sorted and handed off for delivery. Finally, all schedules have to be designed in a way that optimizes for safety and complies with government regulations such as rest breaks, hours of service, and other requirements.

Our trucking network alone presents us with over ten octovigintillion possible routing solutions.
Tim Jacobs

“To give you an idea of the scale and complexity we’re managing, our trucking network alone presents us with over 1088 or ten octovigintillion — possible routing solutions,” says Tim Jacobs, director of Middle Mile Research Science and Optimization. “This is an especially large number, when you consider that there are 1082 atoms in the visible universe.”

And that’s just for the trucking network.

When a product is ordered on the Amazon Store, there are several ways it can make its way from a fulfillment center to the customer’s residence.

There’s the (relatively) straightforward approach: The product is sent from a fulfillment center to a sortation center and to a delivery station, at which point it is placed on a vehicle for delivery to the customer’s residence.

There are also more involved scenarios, such as when customers place time-sensitive orders for items stored in geographically distant fulfillment centers. In these cases, the products are often delivered using a combination of Amazon’s air cargo network along with the surface network to meet the customer’s delivery timelines.

When Jacobs joined Amazon in 2016, the majority of the company’s loads were carried by a relatively small number of large third-party carriers that managed the truck assignments and routings. Since then, the Middle Mile team has helped to develop new ways to manage its transportation network, including by routing a growing number of medium and small carriers using Amazon’s own technology and algorithms, enabling more efficient management and visibility of the transportation network, which in turn helps Amazon get packages to customers faster and more efficiently.

That effort began, in part, by expanding the team.

In the beginning: Improving Amazon’s surface operations

In 2016, Mauricio Resende was among just a few scientists in Amazon’s Middle Mile team — a number that has since grown significantly.

Prior to Amazon, Resende worked as a scientist at AT&T Labs focused on combinatorial optimization. At its essence, combinatorial optimization involves using mathematical methods to identify the best decisions for a problem from a large set of candidate solutions.

“In 2016, Amazon’s surface routing decisions were made using a basic local search algorithm,” Resende says. “Loads were allocated in advance. The process was largely iterative, and we drove small improvements to the algorithm week over week.”

Tim Jacobs, director of Middle Mile Research Science and Optimization; Mauricio Resende, principal research scientist; and Nilay Noyan, principal research scientist
Named among others in Amazon's 2021 INFORMS Prize were (from left) Tim Jacobs, director of Middle Mile Research Science and Optimization, Mauricio Resende, principal research scientist, and Nilay Noyan, principal research scientist.

Crucially, in order to automate routing decisions, the algorithms and systems needed to account for differing constraints and inputs that have a profound impact on routing decisions, such as the nuances of different regulatory agencies in each country.

The system also needed to understand the storage and throughput constraints of each facility by considering factors like operating hours or whether parking slips might be required. So, the team worked to model and eliminate those system blind spots.

“We developed more advanced data structures and algorithmic techniques to account for these constraints as we designed routing schedules,” says Resende.

Resende provides the example of a sequence evaluator designed by Amazon’s Middle Mile research team. The evaluator was designed to help find the most effective routing solution for a pre-determined objective function, such as cost, or number of trips with empty loads.

The evaluator computed the cost for a presented route. It kept working through possible changes to the route until a near-optimal route was found. This solution was then perturbed — routes were deliberately eliminated and new deliveries were fed into the algorithm. The task was then repeated. In this manner, the algorithm progressed toward an iteratively better solution.

Through methods such as these, Resende and his fellow researchers drove a significant reduction in surface transportation costs.

When you are working with such a large universe of possibilities, you have to be incredibly efficient in how you formulate the problem.
Mauricio Resende

“When you are working with such a large universe of possibilities, you have to be incredibly efficient in how you formulate the problem,” says Resende. “You then have to be efficient in designing algorithms to solve that formulation of the problem.”

The Middle Mile team also faced situations where it had to route goods that hadn’t been accounted for in the demand forecasts that are an input to its routing plans. While future demand can be predicted, there are still many unknowns at the planning stage. A good example is spikes in demand for new products, or products that become unexpectedly popular.

To cope with demand variability, the Middle Mile team developed a truckload supply load board with dynamic pricing. The load board, powered by a number of machine learning algorithms coupled with mathematical optimization models, allowed Amazon to expand its delivery network by accessing the available capacity of pre-screened carriers operating in a geographical area or lane.

The load board dynamically sets prices for loads that are currently available. Carriers can review available loads simultaneously. Interested carriers can then accept the load at the offered price in real-time. This arrangement also helps carriers optimize the efficiency of their drivers’ schedules.

As Amazon drove improvements to its surface network, the Middle Mile team also leveraged scientific innovation to design routing solutions for its air cargo service, which has expanded rapidly since launching in 2016.

Developing algorithms to manage Amazon’s fleet of contracted airline partners

Nilay Noyan joined the company as a principal research scientist in September 2019. Prior to Amazon, Noyan was a professor of industrial engineering at Sabanci University in Istanbul.

Broadly speaking, the air routing problems are similar to those for surface networks. However, there are completely different constraints associated with airlines.
Nilay Noyan

“Broadly speaking, the air routing problems are similar to those for surface networks,” says Noyan. “However, there are completely different constraints associated with airlines.”

These include regulatory constraints, lead times for procuring aircraft, the impact of fluctuating fuel prices, and resources required to manage airline contracts. Flight schedule designs also need to ensure that there is sufficient time for routine line maintenance, airplane refueling, and the loading and unloading of packages.

Arrival and departure times must be aligned with available capacity and resources to ensure packages are processed on time. To further complicate matters, airline schedules have to be aligned with those of the surface network so there are trucks waiting on the ground to carry packages to the next destination.

Over the past four years, the Middle Mile Planning Research and Optimization Science team has developed and implemented more than a dozen optimization and machine learning models to build and operate the air transport network. These tools help the team arrive at the most optimal decisions in areas such as flight schedule design, fuel management, package flow planning, maintenance planning, and disruption recovery.

Noyan says machine learning also plays an important role in helping the Middle Mile team solve for problems that are inherently stochastic or unpredictable in nature.

Amazon Prime Air Boeing 767
Over the past four years, the Middle Mile Planning Research and Optimization Science team has developed and implemented more than a dozen optimization and machine learning models to build and operate the air transport network.
Chad Slattery

“Deviations from the execution plans are unavoidable in case of unexpected disruption events due to weather, unscheduled maintenance, and crew-related delays,” says Noyan. “Machine-learning-based prediction methods help us react to these unexpected situations, and adapt quickly so that we can meet our delivery promises to customers.”

In addition to helping Amazon adapt to unpredictable events, Jacobs sees machine learning playing an increasingly important role in helping Amazon more effectively unify the worlds of surface, air, rail and maritime networks for both network design and day of operations.  

“At Amazon, we work back backwards from the customer,” he says. “We don’t think of each mode of transport separately, as is common in the industry. Instead, we are continually working to combine these areas effectively, so that the way we plan and the way we operate the network are consistent.”

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Related content

US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists, engineers, and technical program managers (TPM) to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey!"?
US, CA, Santa Clara
AWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on foundation models, large-scale representation learning, and distributed learning methods and systems. At AWS AI/ML you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and innovate on new representation learning solutions. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Large-scale foundation models have been the powerhouse in many of the recent advancements in computer vision, natural language processing, automatic speech recognition, recommendation systems, and time series modeling. Developing such models requires not only skillful modeling in individual modalities, but also understanding of how to synergistically combine them, and how to scale the modeling methods to learn with huge models and on large datasets. Join us to work as an integral part of a team that has diverse experiences in this space. We actively work on these areas: * Hardware-informed efficient model architecture, training objective and curriculum design * Distributed training, accelerated optimization methods * Continual learning, multi-task/meta learning * Reasoning, interactive learning, reinforcement learning * Robustness, privacy, model watermarking * Model compression, distillation, pruning, sparsification, quantization About Us Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, (Bayesian) time series, macroeconomic, as well as basic familiarity with Matlab, R, or Python is necessary, and experience with SQL would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
The AWS AI Labs team has a world-leading team of researchers and academics, and we are looking for world-class colleagues to join us and make the AI revolution happen. Our team of scientists have developed the algorithms and models that power AWS computer vision services such as Amazon Rekognition and Amazon Textract. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. AWS is the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems which will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. Our research themes include, but are not limited to: few-shot learning, transfer learning, unsupervised and semi-supervised methods, active learning and semi-automated data annotation, large scale image and video detection and recognition, face detection and recognition, OCR and scene text recognition, document understanding, 3D scene and layout understanding, and geometric computer vision. For this role, we are looking for scientist who have experience working in the intersection of vision and language. We are located in Seattle, Pasadena, Palo Alto (USA) and in Haifa and Tel Aviv (Israel).
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning to help Amazon provide the best experience to our Selling Partners by automatically understanding and addressing their challenges, needs and opportunities? Do you want to build advanced algorithmic systems that are powered by state-of-art ML, such as Natural Language Processing, Large Language Models, Deep Learning, Computer Vision and Causal Modeling, to seamlessly engage with Sellers? Are you excited by the prospect of analyzing and modeling terabytes of data and creating cutting edge algorithms to solve real world problems? Do you like to build end-to-end business solutions and directly impact the profitability of the company and experience of our customers? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities Use statistical and machine learning techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. Research and implement novel machine learning and statistical approaches. Lead strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. Drive the vision and roadmap for how ML can continually improve Selling Partner experience. About the team Selling Partner Experience Science (SPeXSci) is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. Focused on collaboration, innovation and strategic impact, we work closely with other science and technology teams, product and operations organizations, and with senior leadership, to transform the Selling Partner experience.
US, CA, Cupertino
We're looking for an Applied Scientist to help us secure Amazon's most critical data. In this role, you'll work closely with internal security teams to design and build AR-powered systems that protect our customers' data. You will build on top of existing formal verification tools developed by AWS and develop new methods to apply those tools at scale. You will need to be innovative, entrepreneurial, and adaptable. We move fast, experiment, iterate and then scale quickly, thoughtfully balancing speed and quality. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities Deeply understand AR techniques for analyzing programs and other systems, and keep up with emerging ideas from the research community. Engage with our customers to develop understanding of their needs. Propose and develop solutions that leverage symbolic reasoning services and concepts from programming languages, theorem proving, formal verification and constraint solving. Implement these solutions as services and work with others to deploy them at scale across Payments and Healthcare. Author papers and present your work internally and externally. Train new teammates, mentor others, participate in recruiting and interviewing, and participate in our tactical and strategic planning. About the team Our small team of applied scientists works within a larger security group, supporting thousands of engineers who are developing Amazon's payments and healthcare services. Security is a rich area for automated reasoning. Most other approaches are quite ad-hoc and take a lot of human effort. AR can help us to reason deliberately and systematically, and the dream of provable security is incredibly compelling. We are working to make this happen at scale. We partner closely with our larger security group and with other automated reasoning teams in AWS that develop core reasoning services.
GB, London
Are you excited about applying economic models and methods using large data sets to solve real world business problems? Then join the Economic Decision Science (EDS) team. EDS is an economic science team based in the EU Stores business. The teams goal is to optimize and automate business decision making in the EU business and beyond. An internship at Amazon is an opportunity to work with leading economic researchers on influencing needle-moving business decisions using incomparable datasets and tools. It is an opportunity for PhD students and recent PhD graduates in Economics or related fields. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL would be a plus. As an Economics Intern, you will be working in a fast-paced, cross-disciplinary team of researchers who are pioneers in the field. You will take on complex problems, and work on solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Roughly 85% of previous intern cohorts have converted to full time economics employment at Amazon.
US, NY, New York
Search Thematic Ad Experience (STAX) team within Sponsored Products is looking for a leader to lead a team of talented applied scientists working on cutting-edge science to innovate on ad experiences for Amazon shoppers!. You will manage a team of scientists, engineers, and PMs to innovate new widgets on Amazon Search page to improve shopper experience using state-of-the-art NLP and computer vision models. You will be leading some industry first experiences that has the potential to revolutionize how shopping looks and feels like on Amazon, and e-commerce marketplaces in general. You will have the opportunity to design the vision on how ad experiences look on Amazon search page, and use the combination of advanced techniques and continuous experimentation to realize this vision. Your work will be core to Amazon’s advertising business. You will be a significant contributor in building the future of sponsored advertising, directly impacting the shopper experience for our hundreds of millions of shoppers worldwide, while delivering significant value for hundreds of thousands of advertisers across the purchase journey with ads on Amazon. Key job responsibilities * Be the technical leader in Machine Learning; lead efforts within the team, and collaborate and influence across the organization. * Be a critic, visionary, and execution leader. Invent and test new product ideas that are powered by science that addresses key product gaps or shopper needs. * Set, plan, and execute on a roadmap that strikes the optimal balance between short term delivery and long term exploration. You will influence what we invest in today and tomorrow. * Evangelize the team’s science innovation within the organization, company, and in key conferences (internal and external). * Be ruthless with prioritization. You will be managing a team which is highly sought after. But not all can be done. Have a deep understanding of the tradeoffs involved and be fierce in prioritizing. * Bring clarity, direction, and guidance to help teams navigate through unsolved problems with the goal to elevate the shopper experience. We work on ambiguous problems and the right approach is often unknown. You will bring your rich experience to help guide the team through these ambiguities, while working with product and engineering in crisply defining the science scope and opportunities. * Have strong product and business acumen to drive both shopper improvements and business outcomes. A day in the life * Lead a multidisciplinary team that embodies “customer obsessed science”: inventing brand new approaches to solve Amazon’s unique problems, and using those inventions in software that affects hundreds of millions of customers * Dive deep into our metrics, ongoing experiments to understand how and why they are benefitting our shoppers (or not) * Design, prototype and validate new widgets, techniques, and ideas. Take end-to-end ownership of moving from prototype to final implementation. * Be an advocate and expert for STAX science to leaders and stakeholders inside and outside advertising. About the team We are the Search thematic ads experience team within Sponsored products - a fast growing team of customer-obsessed engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives to drive value for both our customers and advertisers, through continuous innovation. We focus on new ads experiences globally to help shoppers make the most informed purchase decision while helping shortcut the time to discovery that shoppers are highly likely to engage with. We also harvest rich contextual and behavioral signals that are used to optimize our backend models to continually improve the shopper experience. We obsess about our customers and are continuously seeking opportunities to delight them.
US, CA, Palo Alto
Amazon is the 4th most popular site in the US. Our product search engine, one of the most heavily used services in the world, indexes billions of products and serves hundreds of millions of customers world-wide. We are working on a new initiative to transform our search engine into a shopping engine that assists customers with their shopping missions. We look at all aspects of search CX, query understanding, Ranking, Indexing and ask how we can make big step improvements by applying advanced Machine Learning (ML) and Deep Learning (DL) techniques. We’re seeking a thought leader to direct science initiatives for the Search Relevance and Ranking at Amazon. This person will also be a deep learning practitioner/thinker and guide the research in these three areas. They’ll also have the ability to drive cutting edge, product oriented research and should have a notable publication record. This intellectual thought leader will help enhance the science in addition to developing the thinking of our team. This leader will direct and shape the science philosophy, planning and strategy for the team, as we explore multi-modal, multi lingual search through the use of deep learning . We’re seeking an individual that can enhance the science thinking of our team: The org is made of 60+ applied scientists, (2 Principal scientists and 5 Senior ASMs). This person will lead and shape the science philosophy, planning and strategy for the team, as we push into Deep Learning to solve problems like cold start, discovery and personalization in the Search domain. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon [Earth's most customer-centric internet company]. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California.
JP, 13, Tokyo
Our mission is to help every vendor drive the most significant impact selling on Amazon. Our team invent, test and launch some of the most innovative services, technology, processes for our global vendors. Our new AVS Professional Services (ProServe) team will go deep with our largest and most sophisticated vendor customers, combining elite client-service skills with cutting edge applied science techniques, backed up by Amazon’s 20+ years of experience in Japan. We start from the customer’s problem and work backwards to apply distinctive results that “only Amazon” can deliver. Amazon is looking for a talented and passionate Applied Science Manager to manage our growing team of Applied Scientists and Business Intelligence Engineers to build world class statistical and machine learning models to be delivered directly to our largest vendors, and working closely with the vendors' senior leaders. The Applied Science Manager will set the strategy for the services to invent, collaborating with the AVS business consultants team to determine customer needs and translating them to a science and development roadmap, and finally coordinating its execution through the team. In this position, you will be part of a larger team touching all areas of science-based development in the vendor domain, not limited to Japan-only products, but collaborating with worldwide science and business leaders. Our current projects touch on the areas of causal inference, reinforcement learning, representation learning, anomaly detection, NLP and forecasting. As the AVS ProServe Applied Science Manager, you will be empowered to expand your scope of influence, and use ProServe as an incubator for products that can be expanded to all Amazon vendors, worldwide. We place strong emphasis on talent growth. As the Applied Science Manager, you will be expected in actively growing future Amazon science leaders, and providing mentoring inside and outside of your team. Key job responsibilities The Applied Science Manager is accountable for: (1) Creating a vision, a strategy, and a roadmap tackling the most challenging business questions from our leading vendors, assess quantitatively their feasibility and entitlement, and scale their scope beyond the ProServe team. (2) Coordinate execution of the roadmap, through direct reports, consisting of scientists and business intelligence engineers. (3) Grow and manage a technical team, actively mentoring, developing, and promoting team members. (4) Work closely with other science managers, program/product managers, and business leadership worldwide to scope new areas of growth, creating new partnerships, and proposing new business initiatives. (5) Act as a technical supervisor, able to assess scientific direction, technical design documents, and steer development efforts to maximize project delivery.