Line Haul at DS.jpeg
Amazon Transportation Services' Middle Mile team “has made longstanding contributions to operations research and analytics for decades, and their impact has been widely noted and recognized,” said Erica Klampfl, 2021 INFORMS Prize committee chair.
Credit: AboutAmazon.com

How Amazon's Middle Mile team helps packages make the journey to your doorstep

The Middle Mile team manages complexity and scale in making routing decisions across the company’s expansive transportation network.

Amazon Transportation Services’ Middle Mile team develops routing solutions to move customer orders from its vendors and fulfillment centers to its network of sortation centers, air facilities, and delivery stations in the most efficient way possible.

Watch Amazon's trucks line up outside a facility

Over the past five years, the team has played a critical role in helping Amazon deliver on increasingly ambitious goals — from two-day and one-day deliveries for Prime customers, to one-hour delivery windows for services like Prime Now.

Recently, INFORMS, the leading international association for operations research and analytics professionals, recognized these achievements by awarding Amazon the 2021 INFORMS Prize. The award recognizes the effective integration of operations research and analytics into organizational decision making.

The INFORMS prize logo is shown atop the Amazon logo
The INFORMS prize "is awarded for effective integration of advanced analytics and operations research/management sciences (OR/MS) in an organization."
INFORMS.org

“Amazon has made longstanding contributions to operations research and analytics for decades, and their impact has been widely noted and recognized,” said Erica Klampfl, 2021 INFORMS Prize committee chair. “Amazon is truly deserving of this prestigious prize, and the entire O.R. and analytics community joins INFORMS in thanking them for all they have done and continue to do.”

Over the past five years, the team has doubled down on scientific innovation and operations research to move millions of packages globally through Amazon’s transportation network. The INFORMS award serves as a reminder not just of the work the Middle Mile team has done at Amazon, but also how far they have come.

An extremely complex problem

Given the high number of variables involved in arriving at optimal routing decisions, complexity is a constant for Amazon’s Middle Mile team.

For every customer order, Amazon’s routing algorithms must determine the best path through the network to move the product between suppliers, fulfillment centers, sorting facilities, and delivery stations, to quickly, safely, and cost-effectively reach customers.

They must evaluate the merits of each transportation option — surface, rail, air, or maritime — and determine the most effective route.  The algorithms also determine an optimal or near-optimal route to send the order to a facility where it can be sorted and handed off for delivery. Finally, all schedules have to be designed in a way that optimizes for safety and complies with government regulations such as rest breaks, hours of service, and other requirements.

Our trucking network alone presents us with over ten octovigintillion possible routing solutions.
Tim Jacobs

“To give you an idea of the scale and complexity we’re managing, our trucking network alone presents us with over 1088 or ten octovigintillion — possible routing solutions,” says Tim Jacobs, director of Middle Mile Research Science and Optimization. “This is an especially large number, when you consider that there are 1082 atoms in the visible universe.”

And that’s just for the trucking network.

When a product is ordered on the Amazon Store, there are several ways it can make its way from a fulfillment center to the customer’s residence.

There’s the (relatively) straightforward approach: The product is sent from a fulfillment center to a sortation center and to a delivery station, at which point it is placed on a vehicle for delivery to the customer’s residence.

There are also more involved scenarios, such as when customers place time-sensitive orders for items stored in geographically distant fulfillment centers. In these cases, the products are often delivered using a combination of Amazon’s air cargo network along with the surface network to meet the customer’s delivery timelines.

When Jacobs joined Amazon in 2016, the majority of the company’s loads were carried by a relatively small number of large third-party carriers that managed the truck assignments and routings. Since then, the Middle Mile team has helped to develop new ways to manage its transportation network, including by routing a growing number of medium and small carriers using Amazon’s own technology and algorithms, enabling more efficient management and visibility of the transportation network, which in turn helps Amazon get packages to customers faster and more efficiently.

That effort began, in part, by expanding the team.

In the beginning: Improving Amazon’s surface operations

In 2016, Mauricio Resende was among just a few scientists in Amazon’s Middle Mile team — a number that has since grown significantly.

Prior to Amazon, Resende worked as a scientist at AT&T Labs focused on combinatorial optimization. At its essence, combinatorial optimization involves using mathematical methods to identify the best decisions for a problem from a large set of candidate solutions.

“In 2016, Amazon’s surface routing decisions were made using a basic local search algorithm,” Resende says. “Loads were allocated in advance. The process was largely iterative, and we drove small improvements to the algorithm week over week.”

Tim Jacobs, director of Middle Mile Research Science and Optimization; Mauricio Resende, principal research scientist; and Nilay Noyan, principal research scientist
Named among others in Amazon's 2021 INFORMS Prize were (from left) Tim Jacobs, director of Middle Mile Research Science and Optimization, Mauricio Resende, principal research scientist, and Nilay Noyan, principal research scientist.

Crucially, in order to automate routing decisions, the algorithms and systems needed to account for differing constraints and inputs that have a profound impact on routing decisions, such as the nuances of different regulatory agencies in each country.

The system also needed to understand the storage and throughput constraints of each facility by considering factors like operating hours or whether parking slips might be required. So, the team worked to model and eliminate those system blind spots.

“We developed more advanced data structures and algorithmic techniques to account for these constraints as we designed routing schedules,” says Resende.

Resende provides the example of a sequence evaluator designed by Amazon’s Middle Mile research team. The evaluator was designed to help find the most effective routing solution for a pre-determined objective function, such as cost, or number of trips with empty loads.

The evaluator computed the cost for a presented route. It kept working through possible changes to the route until a near-optimal route was found. This solution was then perturbed — routes were deliberately eliminated and new deliveries were fed into the algorithm. The task was then repeated. In this manner, the algorithm progressed toward an iteratively better solution.

Through methods such as these, Resende and his fellow researchers drove a significant reduction in surface transportation costs.

When you are working with such a large universe of possibilities, you have to be incredibly efficient in how you formulate the problem.
Mauricio Resende

“When you are working with such a large universe of possibilities, you have to be incredibly efficient in how you formulate the problem,” says Resende. “You then have to be efficient in designing algorithms to solve that formulation of the problem.”

The Middle Mile team also faced situations where it had to route goods that hadn’t been accounted for in the demand forecasts that are an input to its routing plans. While future demand can be predicted, there are still many unknowns at the planning stage. A good example is spikes in demand for new products, or products that become unexpectedly popular.

To cope with demand variability, the Middle Mile team developed a truckload supply load board with dynamic pricing. The load board, powered by a number of machine learning algorithms coupled with mathematical optimization models, allowed Amazon to expand its delivery network by accessing the available capacity of pre-screened carriers operating in a geographical area or lane.

The load board dynamically sets prices for loads that are currently available. Carriers can review available loads simultaneously. Interested carriers can then accept the load at the offered price in real-time. This arrangement also helps carriers optimize the efficiency of their drivers’ schedules.

As Amazon drove improvements to its surface network, the Middle Mile team also leveraged scientific innovation to design routing solutions for its air cargo service, which has expanded rapidly since launching in 2016.

Developing algorithms to manage Amazon’s fleet of contracted airline partners

Nilay Noyan joined the company as a principal research scientist in September 2019. Prior to Amazon, Noyan was a professor of industrial engineering at Sabanci University in Istanbul.

Broadly speaking, the air routing problems are similar to those for surface networks. However, there are completely different constraints associated with airlines.
Nilay Noyan

“Broadly speaking, the air routing problems are similar to those for surface networks,” says Noyan. “However, there are completely different constraints associated with airlines.”

These include regulatory constraints, lead times for procuring aircraft, the impact of fluctuating fuel prices, and resources required to manage airline contracts. Flight schedule designs also need to ensure that there is sufficient time for routine line maintenance, airplane refueling, and the loading and unloading of packages.

Arrival and departure times must be aligned with available capacity and resources to ensure packages are processed on time. To further complicate matters, airline schedules have to be aligned with those of the surface network so there are trucks waiting on the ground to carry packages to the next destination.

Over the past four years, the Middle Mile Planning Research and Optimization Science team has developed and implemented more than a dozen optimization and machine learning models to build and operate the air transport network. These tools help the team arrive at the most optimal decisions in areas such as flight schedule design, fuel management, package flow planning, maintenance planning, and disruption recovery.

Noyan says machine learning also plays an important role in helping the Middle Mile team solve for problems that are inherently stochastic or unpredictable in nature.

Amazon Prime Air Boeing 767
Over the past four years, the Middle Mile Planning Research and Optimization Science team has developed and implemented more than a dozen optimization and machine learning models to build and operate the air transport network.
Chad Slattery

“Deviations from the execution plans are unavoidable in case of unexpected disruption events due to weather, unscheduled maintenance, and crew-related delays,” says Noyan. “Machine-learning-based prediction methods help us react to these unexpected situations, and adapt quickly so that we can meet our delivery promises to customers.”

In addition to helping Amazon adapt to unpredictable events, Jacobs sees machine learning playing an increasingly important role in helping Amazon more effectively unify the worlds of surface, air, rail and maritime networks for both network design and day of operations.  

“At Amazon, we work back backwards from the customer,” he says. “We don’t think of each mode of transport separately, as is common in the industry. Instead, we are continually working to combine these areas effectively, so that the way we plan and the way we operate the network are consistent.”

Related content

  • Staff writer
    December 24, 2024
    Large language models remained a hot topic, but posts about cryptography and automated reasoning also drew readers.
  • Staff writer
    December 24, 2024
    From cloud databases and anomaly detection on graphs to recession prediction and Amazon's new Nova foundation models, these are the most viewed publications authored by Amazon scientists and collaborators in 2024.
  • Amazon Research Awards team
    December 20, 2024
    Awardees, who represent 10 universities, have access to Amazon public datasets, along with AWS AI/ML services and tools.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!