An overhead shot inside an Amazon fulfillment center shows hundreds of boxes on conveyor belts along with people monitoring the flow of those packages
Amazon's scale makes picking the right package for each product a challenge. Fortunately, machine learning approaches — particularly deep learning — thrive on big data and massive scale. These tools have helped Amazon reduce per-shipment packaging weight by 36% and eliminate more than a million tons of packaging.

How pioneering deep learning is reducing Amazon’s packaging waste

A combination of deep learning, natural language processing, and computer vision enables Amazon to hone in on the right amount of packaging for each product.

Finding the right amount of packaging to ship an item can be challenging — and at Amazon, an ever-changing catalog of hundreds of millions of products makes it an ongoing challenge. In addition, Amazon’s scale also means it is impossible to solve this challenge using manual inspection to choose packaging for each and every item. For the same reason, general packaging rules and run-of-the-mill logic just won’t cut it. What’s required is a cutting-edge-smart automated mechanism that can adapt on the fly to changing circumstances.

Prasanth Meiyappan, top right, an applied scientist, and Matthew Bales, a research science manager, authored "Reducing Amazon’s packaging waste using multimodal deep learning". Their position paper was one of the 10 most read research papers on Amazon Science in 2021.

Fortunately, machine learning approaches — particularly deep learning — thrive on big data and massive scale, and a pioneering combination of natural language processing and computer vision is enabling Amazon to hone in on using the right amount of packaging. These tools have helped Amazon drive change over the past six years, reducing per-shipment packaging weight by 36% and eliminating more than a million tons of packaging, equivalent to more than 2 billion shipping boxes.

“When I started at Amazon in 2017, we had a lot of physical testing of products going on, but not a scalable mechanism that could assess hundreds of millions of products to identify the optimal packaging type for each product,” says research science manager Matthew Bales. Bales, who is also a physicist, heads up machine learning within Amazon’s Customer Packaging Experience team.

“Statistical tests were the first piece, but they are essentially only useful when products have already been shipped in more than one package type. We wanted the capability to predict how a product would fare in a less-protective, lighter, and more sustainable package type. And once you're in that predictive space, you need machine learning,” Bales explains.

The power of customer feedback

To make a prediction about whether a given product could be safely shipped in a particular package type, Bales and his colleagues built a ML model based largely on the text-based data that customers find on the Amazon Store — the item name, description, price, package dimensions, and so on.

Related content
As office buildings become smarter, it is easier to configure them with sustainability management in mind.

The model was trained on millions of examples of products successfully delivered in various packaging types, and on examples of products that arrived damaged in given packaging types. Amazon has access to almost real-time feedback when a product is not sufficiently protected by its packaging, because customers report it via the Online Returns Center and other forms of feedback, including product reviews.

“Customer feedback is paramount,” says Bales. “It powers all of our statistical testing.”

The model learned that certain keywords were particularly important when making packaging decisions. For example, keywords that indicated that a padded mailer would not be the right packaging included “ceramic”, “grocery”, “mug” and “glass”. These products were better shipped in a box. Keywords that suggested mailers were the right choice included “multipack” and “bag.” Those indicated the product might already have some form of protective packaging.

“The portion of the model that's learning from the Amazon Store has learned really well what the product is, and about its dimensions,” says Bales.

Reducing Amazon’s packaging waste using multimodal deep learning

It’s an important step in the journey, but automatically learning what a product is represents only half the battle. Equally important is how the vendor packaged the product before sending it to a fulfillment center. For example, a ceramic mug may be packaged in clear plastic bag, or in a sturdy box.

To identify product packaging at scale, computer vision needed to be deployed. The ML team already knew that the product images on the Amazon Store weren’t helpful when selecting packaging. For example, a multipack of LED bulbs might be illustrated by a picture of a single, unpacked bulb, suggesting it is fragile, yet the multipack is, in fact, safely packaged by the vendor and doesn’t require additional packaging. It is best shipped in its own container.

Bales’s team addressed this challenge by using Amazon’s own image data. When products are delivered to fulfillment centers, many are sent via conveyor belt through special computer-vision tunnels equipped with cameras that capture images of the products from multiple angles. These tunnels are used for many things, including ascertaining product dimensions and spotting defects.

Prasanth Meiyappan, an Amazon applied scientist, expanded the training of the team’s ML model to include these standardized product images in addition to the text classifiers from the catalog — a multimodal approach.

Our model detects the packaging edges to determine shape, identifies a perforation, a bag around the product, or light shining through a glass bottle.
Prasanth Meiyappan

“Our model detects the packaging edges to determine shape, identifies a perforation, a bag around the product, or light shining through a glass bottle.” Meiyappan explains. But to some extent, how the model makes its judgement about what it detects in images is hard for a human to discern, because the product features identified and weighted by the model tend to be complex.

“The important thing,” Bales notes, “is that the packaging decisions generated by the model are empirically accurate.”

Incorporating both text-based and visual data improved the ML model’s performance by as much as 30%, compared with using text-based data alone. Bales and Meiyappan have produced a position paper describing their work.

“When the model is certain of the best package type for a given product, we allow it to auto-certify it for that pack type,” says Bales. “When the model is less certain, it flags a product and its packaging for testing by a human.” The technology is currently being applied to product lines across North America, Europe, and Japan — automatically reducing waste at a growing scale.

“It’s a triple win,” says Bales. “Reduced waste, increased customer satisfaction, and lower costs.”

Balancing act

To arrive at this triple win, though, the team also had to take on a thorny challenge encountered frequently in the ML domain: class imbalance. In a nutshell, the problem is this: if you want an ML model to learn effectively, you ideally provide it with as many examples of failures as successes, so it can learn to differentiate effectively between the two.

The data used to train the model had many millions of examples of product/package pairings, yet depending on the package type, as little as 1% of those examples were for packages that turned out to be unsuitable in some way for the product within.

The machine learning literature to do with packaging is pretty sparse. Not many people deal with the kind of datasets we are dealing with in the packaging domain.
Prasanth Meiyappan

“Prior to implementing ML, we’ve shipped some product in envelopes and mailers for some time,” says Bales. “So, we had loads of examples of things that were good in mailers, but didn't have a lot of examples of things that were bad in mailers. ML models have problems with this kind of overwhelming imbalance.”

“The machine learning literature to do with packaging is pretty sparse,” Meiyappan says. “Not many people deal with the kind of datasets we are dealing with in the packaging domain. How effective a technique is in dealing with dataset imbalance is both domain and dataset specific.”

Thus the team’s approach to the class imbalance problem was primarily experimental. And of the six approaches they applied — four data based, two algorithm based — the clear winner produced a marked improvement in model accuracy. That was a data-based approach called two-phase learning with random under sampling which focuses the model on the minority class in the first phase of training and then on all of the data in the second. “In our position paper we share that knowledge with the ML community,” says Bales, “so that anyone who encounters a similar problem might choose to try this approach for themselves, to see if it also works in their problem space.”

What’s next

The team said they are eager to expand the use of this tool by training the model to understand all Amazon’s customers languages while also incorporating the unique aspects of fulfilment in each country.

Read the Amazon Sustainability Report

Amazon is committed to building a sustainable business for customers and the planet. Learn more about Amazon's goals, strategies, and policies in the Amazon Sustainability Report.

While Amazon scientists continue to research other ways to utilize machine learning to eliminate waste, the company is also working to reduce packaging waste throughout the e-commerce supply chain. Amazon is, for example, increasingly incentivizing its vendors to create optimized e-commerce packaging for themselves that saves space and materials without compromising product protection.

The company’s Shipment Zero goal is to deliver 50% of shipments with net-zero carbon by 2030, which from a packaging perspective means shipping products without added Amazon packaging or in carbon-neutral packaging. This is part of the Amazon’s wider Climate Pledge — a commitment to reach net-zero carbon by 2040, a decade earlier than the 2050 emissions target of the Paris Agreement.

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Related content

US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
LU, Luxembourg
Are you a talented and inventive scientist with a strong passion about modern data technologies and interested to improve business processes, extracting value from the data? Would you like to be a part of an organization that is aiming to use self-learning technology to process data in order to support the management of the procurement function? The Global Procurement Technology, as a part of Global Procurement Operations, is seeking a skilled Data Scientist to help build its future data intelligence in business ecosystem, working with large distributed systems of data and providing Machine Learning (ML) and Predictive Modeling expertise. You will be a member of the Data Engineering and ML Team, joining a fast-growing global organization, with a great vision to transform the Procurement field, and become the role model in the market. This team plays a strategic role supporting the core Procurement business domains as well as it is the cornerstone of any transformation and innovation initiative. Our mission is to provide a high-quality data environment to facilitate process optimization and business digitalization, on a global scale. We are supporting business initiatives, including but not limited to, strategic supplier sourcing (e.g. contracting, negotiation, spend analysis, market research, etc.), order management, supplier performance, etc. We are seeking an individual who can thrive in a fast-paced work environment, be collaborative and share knowledge and experience with his colleagues. You are expected to deliver results, but at the same time have fun with your teammates and enjoy working in the company. In Amazon, you will find all the resources required to learn new skills, grow your career, and become a better professional. You will connect with world leaders in your field and you will be tackling Data Science challenges to ensure business continuity, by taking the right decisions for your customers. As a Data Scientist in the team, you will: -be the subject matter expert to support team strategies that will take Global Procurement Operations towards world-class predictive maintenance practices and processes, driving more effective procurement functions, e.g. supplier segmentation, negotiations, shipping supplies volume forecast, spend management, etc. -have strong analytical skills and excel in the design, creation, management, and enterprise use of large data sets, combining raw data from different sources -provide technical expertise to support the development of ML models to facilitate intelligent digital services, such as Contract Lifecycle Management (CLM) and Negotiations platform -cooperate closely with different groups of stakeholders, e.g. data/software engineers, product/program managers, analysts, senior leadership, etc. to evaluate business needs and objectives to set up the best data management environment -create and share with audiences of varying levels technical papers and presentations -deal with ambiguity, prioritizing needs, and delivering results in a dynamic environment Basic qualifications -Master’s Degree in Computer Science/Engineering, Informatics, Mathematics, or a related technical discipline -3+ years of industry experience in data engineering/science, business intelligence or related field -3+ years experience in algorithm design, engineering and implementation for very-large scale applications to solve real problems -Very good knowledge of data modeling and evaluation -Very good understanding of regression modeling, forecasting techniques, time series analysis, machine-learning concepts such as supervised and unsupervised learning, classification, random forest, etc. -SQL and query performance tuning skills Preferred qualifications -2+ years of proficiency in using R, Python, Scala, Java or any modern language for data processing and statistical analysis -Experience with various RDBMS, such as PostgreSQL, MS SQL Server, MySQL, etc. -Experience architecting Big Data and ML solutions with AWS products (Redshift, DynamoDB, Lambda, S3, EMR, SageMaker, Lex, Kendra, Forecast etc.) -Experience articulating business questions and using quantitative techniques to arrive at a solution using available data -Experience with agile/scrum methodologies and its benefits of managing projects efficiently and delivering results iteratively -Excellent written and verbal communication skills including data visualization, especially in regards to quantitative topics discussed with non-technical colleagues
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables
US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.