Sense, Act, and Scale
The path to improving building energy efficiency can be paved with the framework of sense, act, and scale say authors Bharathan Balaji, an Amazon senior research scientist within the company's Devices organization, and Rob Aldrich, an Amazon Web Services senior sustainability strategist.

Creating sustainable, data-driven buildings

As office buildings become smarter, it is easier to configure them with sustainability management in mind.

Editor’s note: This article is adapted from a keynote presentation Bharathan Balaji , an Amazon senior research scientist within the company’s Devices organization, delivered in June at the 17th International Conference on Intelligent Environments . It is further informed by the book "IP-Enabled Energy Management, A Proven Strategy for Administering Energy as a Service " and its author, Rob Aldrich, Amazon Web Services senior sustainability strategist.

Buildings generate about 28% of the global greenhouse gas emissions today. The United Nations Global Status Report projects that buildings need to be at least 30% more energy efficient to achieve Paris Agreement goals.

How can we achieve that 30% energy efficiency target?

The path to reducing our emissions by improving building energy efficiency can be paved with the framework of sense, act, and scale. We need to sense to ascertain efficiency gaps within buildings. We need solutions that act on the information to achieve energy savings. And finally, we need to scale solutions so they get implemented broadly. Here is how this proposed framework can help us achieve our goals.

Sense

For office buildings that are smart and connected, the data set is rich and has much of the granular, sustainability data needed to drive change. Electricity and gas meters tell us how much energy is being consumed by a building, occupancy sensors tell us the number of people in the building, and temperature sensors tell us how much energy we need to cool a room. Sensors are the source of our information and the key to unlocking energy efficiency gaps. Even simple dashboards with such data can motivate users to save energy.

These types of sensors are abundant in modern buildings. However, many of them are wired sensors that are part of the building’s original design, and it is expensive to modify or install new sensors. Office buildings have a life of 50+ years, and sensor technology advances far more rapidly. Wireless sensors undoubtedly reduce communications costs, but they still need to be powered through wires, or use batteries that significantly increase maintenance costs at scale (imagine changing the batteries in every room of an office building).

New sensor options provide for ambient energy harvesting. These wireless sensors work by scavenging energy from the environment such as using ambient light, ventilation air flow, or hot water pipes. These sensors can minimize both energy and communications costs, but scavenged energy is insufficient to sense 24x7. We can improve reliability by predicting the environmental patterns and judiciously using the available energy.

A recent paper in SenSys (coauthored by Bharathan, lead author of this article) showed that reinforcement-learning-based scheduling of energy harvesting sensors can detect 93% of events in a real-world deployment. While the small percentage of missed events make these sensors ineligible for use in essential services, we can use the data from these inexpensive sensors opportunistically to create a rich information layer that helps save energy.

Information Bottleneck: Senors

This new, rich information layer can drive the return on investment (ROI) that has been lacking in many sensor installations. Energy and data managers can provide the missing link between top-end sustainability initiatives and the many different sensor options that exist in buildings. Furthermore, the cost of sensor architectures can be reduced by focusing only on the key data sources that support a given use case. 

For this article we chose to focus primarily on building sustainability data: energy, occupancy, emissions, air and water. This focus helps enable an estimated ROI because you already have a use case that defines how you will act on the information available. The use case for sustainability is to reduce wasted energy while moving to low greenhouse gas (GhG) fuel sources.  Informed by sensor data, the actions taken in support of these goals can be the mechanism by which savings are achieved.

Act

The traditional way to make buildings more energy efficient is to inspect the equipment, install sensors to measure baseline energy consumption, fix faults, upgrade equipment, and optimize equipment configuration. Heating, ventilation and air conditioning (HVAC) systems typically comprise the largest portion of building energy use, and many of the efficiency measures target HVAC improvements. These methods work, and can lead to more than 10% reductions in building energy use. The entire process is often referred to as building retrofitting through performance contracting.

However, two issues with the above approach typically block adoption. First, there is an upfront cost to hire experts and upgrade equipment. The ROI can take years. Second, there is limited scope for innovation beyond the template followed during commissioning. Building innovation is stifled by vertically integrated systems and an inability to easily deploy third-party applications. One of the primary reasons for the explosive growth in the computing industry is a standard interface and ease of application installation. An analogous system for buildings will create new opportunities to save energy. The innovation opportunities with a standardized building information system is highlighted with three use cases below. It is easy to create such a system with current technologies; the figure below shows a high-level architecture.

Building information system architecture

Occupancy-based control

The idea is simple: if we shut off systems that aren’t required when people aren’t present, we save energy. However, detecting occupancy reliably in a privacy-preserving manner is challenging, and most buildings today keep the lights (and HVAC) on even when no one is present. A paper published in SenSys (coauthored by Bharathan) showed that it is possible to infer occupancy using WiFi data, building floor plans, and personnel office room assignments. Among the study participants, peak building occupancy was just 60% (see figure below), and occupancy-based control saved 18% of HVAC electricity use by controlling one-quarter of the building area. The proposed solution simply leverages existing building infrastructure and is inexpensive to deploy. This type of solution is possible only because the information across different systems is exchanged freely.

Building Occupancy Trends

Fault detection

Fixing faults is core to building maintenance, but it is challenging to identify energy-wasting faults as they are difficult to notice, unlike a leak or an uncomfortable temperature. Typical building-fault detection relies on protocols established by experts, but these rules do not provide sufficient prioritization information, nor how much energy they waste.

Sophisticated fault detection algorithms have been published in literature, yet these are not deployed in practice because of vendor- locked systems. Using one year of building data, researchers (Bharathan was a coauthor) developed a simple machine learning algorithm that looks for rooms that do not follow typical temperature patterns. The algorithm identified 88 faults within the building’s HVAC system after an expert fixed all the faults found during an inspection. Many of these faults had existed for years, and resulted in estimated 410.3MWh/year savings. Again, the key component to this solution: easy access to building data.

Software thermostat

The thermostat is the only interface between building occupants and the energy-intensive HVAC system. And yet, in most buildings, occupants don’t know where the thermostat is or how to use it. The HVAC system’s primary function is to keep occupants comfortable so that they can be productive. But without thermostat feedback, occupants can end up being uncomfortable and waste energy.

With the building information system, researchers (Bharathan and collaborators) built a software version of the thermostat to address these concerns (screenshot below). The application was an instant hit and remains popular eight years after its launch. The resulting user study published in Ubicomp showed that users were frustrated with the old thermostat. In fact, one user actually taped a manila envelope on the vent to stop cold air from blowing. The software thermostat helped users precisely control their environment and send complaints if needed. The HVAC maintenance personnel were worried that the interface would lead to a flood of complaints that they weren’t staffed to handle. Usage data showed that most users were happy to use the application without giving any feedback. The few complaints received led to identification of major faults, such as a thermostat being blocked by a computer.

Software thermostat

The three use cases above didn’t require additional sensor installations and simply leveraged existing information. With low-cost solutions, we can attract building owners to adopt solutions that save energy. But we need additional incentives within the building industry to create these low-cost solutions that can have large-scale impact.

These use cases demonstrate that sustainable design doesn’t stop at the brick and mortar of the building. It should carry through to how the energy, emissions, air, water and waste can be managed as systems across buildings. As companies worldwide embark on making their buildings more sustainable, it will be critical to have a data-driven measure of success. The sense and act steps allow each company to look at what is common in the data model today, get started, assess the value, and scale as needed using open-source tools.

Scale

Even when an attractive energy-saving solution is available, it is difficult to deploy the solution at scale. This is because each building is unique, from its infrastructure and how it is used, to the software used to manage daily operations, and how it changes over time. While the fundamental components of a building remain the same (e.g., rooms, smoke sensors, ventilation fans), each vendor treats them differently. When we try to deploy a solution to a building, the discrepancies between vendor representations become difficult to resolve automatically.

In the computing industry, on other hand, it is easy for us to install an application without worrying about the manufacturer or provider because of the use of specifications (e.g., standard protocols for WiFi) and programming interfaces (e.g., Android OS for the phone). Researchers (including Bharathan) created such a standard interface for buildings with the Brick schema, where the building components and their connections to each other are represented through a knowledge graph. The figure below shows a Brick representation of a toy building with two rooms and a few sensors. Brick is now an industry consortium with growing demand, and is in the process of being integrated into building standards.

Given a standard representation such as Brick, we still have the task of representing the existing building in this new format, which can take manual effort and be slow to deploy. Using machine-learning techniques in natural language processing, we can automate this translation and minimize manual effort. The algorithm’s performance improves as more buildings are mapped to Brick and it learns from representation patterns across buildings.

The Brick schema

With the sense, act and scale framework, we envision a day when it will be as easy to configure a building as it is our phones today. We can improve the information available to building managers by using low-cost sensors, use the available information to develop innovations that save energy, and deploy the solution to many buildings with use of a knowledge graph.

Getting started

We are seeing early success in using the sense, act, scale approach in our AWS Sustainability Services practice to optimize how buildings report their sustainability data through the cloud.  It solves several problems by providing a simple framework to plan how our top-level sustainability strategy can be supported by specific building-optimization steps, underpinned by a semi-standardized data model.

The lack of standardization across building management systems has resulted in difficulties in accessing the data. Now that those data acquisition problems are being solved through advances in IoT and API, it opens up new opportunities to expose, analyze and report data that was previously difficult or costly to acquire.  With new advances like the Brick schema, we are making advances in how we can manage building assets at scale, just like servers, laptops and phones.

We are starting to see the potential to move the world from a building management systems approach; one building, one manager to a building systems management approach; many buildings, one manager. Energy efficiency gains of 30% or more are more feasible when we automate energy-control policies across all buildings at the push of a button.

Research areas

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
IN, TS, Hyderabad
Job summaryAre you excited about driving business growth for millions of sellers by applying Machine Learning? Do you thrive in a fast-moving, large-scale environment that values data-driven decision making and sound scientific practices? We are looking for experienced data scientists to build sophisticated decision making systems that help Amazon Marketplace Sellers to grow their businesses.Amazon Marketplace enables sellers to reach hundreds of millions of customers and provides sellers the tools and services needed to make e-commerce simple, efficient and successful. Our team builds the core intelligence, insights, and algorithms that power a range of products used by millions of sellers. We are tackling large-scale, challenging problems such as helping sellers to prioritise business tasks by bringing together petabytes of data from sources across Amazon.You will be proficient with creating value out of data by formulating questions, analysing vast amounts of data, and communicating insights effectively to audience of varied backgrounds. In addition, you'll contribute to online experiments, build machine learning pipelines and personalised data products.To know more about Amazon science, Please visit https://www.amazon.scienceKey job responsibilities· Collaborate with domain experts, formulate questions, gather, process and analyse petabytes of data to unearth reliable insights· Design & execute experiments and analyze experimental results· Communicate insights effectively to audience of a wide range of backgrounds· Formulate relevant prediction problems and solve them by developing machine learning models· Partner with data engineering teams to improve quality of data assets, metrics and insights· Leverage industry best practices to establish repeatable science practices, principles & processes
US, WA, Seattle
Job summaryAmazon Sub-Same-Day Supply Chain team is looking for an experienced and motivated Senior Data Scientist to generate data-driven insights influencing the long term SSD supply chain strategy, build the necessary predictive models, optimization algorithms and customer behavioral segments allowing us to discover and build the roadmap for SSD to enable operational efficiency and scale.Key job responsibilitiesWork with product managers, engineers, other scientists, and leadership to identify and prioritize complex problems.Translate business problems into specific analytical questions and form hypotheses that can be answered with available data using scientific methods or identify additional data needed in the master datasets to fill any gapsDesign, develop, and evaluate highly innovative statistics and ML modelsGuide and establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementationProactively seek to identify business opportunities and insights and provide solutions to shape key business processes and policies based on a broad and deep knowledge of Amazon data, industry best-practices, and work done by other teams.A day in the lifeIn this role, you will be a technical expert with significant scope and impact. You will work with Product Managers, Business Engineers, and other Scientists, to deeply understand SSDs current optimization strategy while benchmarking against industry best practices and standards to gain insights that will drive our roadmap. A successful Data Scientist will have extreme bias for action needed in a startup environment, with outstanding leadership skills, proven ability to build and manage medium-scale modeling projects, identify data requirements, build methodology and tools that are statistically grounded. It will be a person who enjoys diving deep into data, doing analysis, discovering root causes, and designing long-term scientific solutions. We are seeking someone who can thrive in a fast-paced, high-energy and fun work environment where we deliver value incrementally and frequently. We value highly technical people who know their subject matter deeply and are willing to learn new areas. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career.About the teamAmazon's Sub-Same Day (SSD) delivery program is designed to get customers their items as fast as possible – currently in as quickly as five hours. With ultra-fast delivery becoming increasingly important, we are looking for an experienced Senior Data Scientist to help us benchmark against industry standards to uncover insights to improve and optimize the long term supply chain strategy for Amazons Sub-Same-Day business.
US, CA, Santa Clara
Job summaryJob summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, VA, Arlington
Job summaryAmazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities.Sponsored Products helps merchants, retail vendors, and brand owners succeed via native advertising that grows incremental sales of their products sold through Amazon. The Sponsored Products Ad Marketplace organization optimizes the systems and ad placements to match advertiser demand with publisher supply using a combination of machine learning, big data analytics, ultra-low latency high-volume engineering systems, and quantitative product focus. Our goals are to help buyers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and to build a major, sustainable business that helps Amazon continuously innovate on behalf of all customers.We are seeking a Sr. Applied Science Manager who has a solid background in applied Machine Learning and AI, deep passion for building data-driven products, ability to communicate data insights and scientific vision, and has a proven track record of leading both applied scientists and software engineers to execute complex projects and deliver business impacts.In this team, Machine Learning and Deep Learning technologies including Semantic Retrieval, Natural Language Processing (NLP), Information Extraction, Image Understanding, Learning to Rank are used to match shoppers' search queries to ads with per impression prediction models that run in real-time with tight latency budgets. Models are trained using self-supervised techniques, transfer learning, and supervised training using labeled datasets. Knowledge distillation and model compression techniques are used to optimize model performance for production serving.The Senior Manager role will lead science and engineering efforts in these areas for Amazon Search pages WW. The person in this role is responsible for: maintaining the consistent and long term reliability for the models and the delivery services that power them, managing diverse teams across multiple domains, and collaborating cross-functional with other senior decision makers. Our critical LPs for this role are Think Big, Are Right A lot, and Earns Trust. What is key is that the leader will need a dynamic mindset to build systems that are flexible and will scale.In this role, you will:· Lead a group of both applied scientists and software engineers to deliver machine-learning and AI solutions to production.· Advance team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner.· Develop science and engineering roadmap, run Sprint/quarter and annual planning, and foster cross-team collaboration to execute complex projects.· Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management.· Hire and develop top talents, provide technical and career development guidance to both scientists and engineers in the organization.Locations: Seattle, WA; New York, NY; Arlington, VA
US, WA, Seattle
Job summaryWorkforce Staffing (WFS) brings together the workforce powering Amazon’s ability to delight customers: the Amazon Associate. With over 1M hires, WFS supports sourcing, hiring, and developing the best talent to work in our fulfillment centers, sortation centers, delivery stations, shopping sites, Prime Air locations, and more.WFS' Funnel Science and Analytics team is looking for a Research Scientist. This individual will be responsible for conducting experiments and evaluating the impact of interventions when conducting experiments is not feasible. The perfect candidate will have the applied experience and the theoretical knowledge of policy evaluation and conducting field studies.Key job responsibilitiesAs a Research Scientist (RS), you will do causal inference, design studies and experiments, leverage data science workflows, build predictive models, conduct simulations, create visualizations, and influence science and analytics practice across the organization.Provide insights by analyzing historical data from databases (Redshift, SQL Server, Oracle DW, and Salesforce).Identify useful research avenues for increasing candidate conversion, test, and create well written documents to communicate to technical and non-technical audiences.About the teamFunnel Science and Analytics team finds ways to maximize the conversion and early retention of every candidate who wants to be an Amazon Associate. By focusing on our candidates, we improve candidate and business outcomes, and Amazon takes a step closer to being Earth’s Best Employer.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, WA, Seattle
Job summaryAmazon's Weblab team enables experimentation at massive scale to help Amazon build better products for customers. A/B testing is in Amazon's DNA and we're at the core of how Amazon innovates on behalf of customers. We are seeking a skilled Applied Scientist to help us build the future of experimentation systems at Amazon.About you:You have an entrepreneurial spirit and want to make a big impact on Amazon and its customers. You are excited about cutting-edge research on unsupervised learning, graph algorithms, and causal inference in the intersection between Machine Learning, Statistics, and Econometrics. You enjoy building massive scale and high performance systems but also have a bias for delivering simple solutions to complex problems. You're looking for a career where you'll be able to build, to deliver, and to impress. You challenge yourself and others to come up with better solutions. You develop strong working relationships and thrive in a collaborative team environment.About us together:We're going to help Amazon make better long term decisions by designing and delivering A/B-testing systems for long-term experiments, and by using these systems to figure out how near term behavior impacts long term growth and profitability. Our work will inform some of the biggest decisions at Amazon. Along the way, we're going to face seemingly insurmountable challenges. We're going to argue about how to solve them, and we'll work together to find a solution that is better than each of the proposals we came in with. We'll make tough decisions, but we'll all understand why. We'll be the dream team.We have decades of combined experience on the team in many areas science and engineering so it's a great environment in which to learn and grow. A/B testing is one of the hottest areas of research and development in the world today and this is a chance to learn how it works in the company known for pioneering its use.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles).Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.