zooxsensors.png
State-of-the-art sensors placed on each corner of the Zoox robotaxi enable it to ‘see’ in all directions simultaneously.

How the Zoox robotaxi predicts everything, everywhere, all at once

A combination of cutting-edge hardware, sensor technology, and bespoke machine learning approaches can predict trajectories of vehicles, people, and even animals, as far as 8 seconds into the future.

We humans often lament that we cannot predict the future, but perhaps we don’t give ourselves quite enough credit. With sufficient practice, our short-term predictive skills become truly remarkable.

Driving is a good example, particularly in urban environments. Navigating through a city, you become aware of a colossal number of dynamic aspects in your surroundings. The other cars — some moving, some stationary — pedestrians, cyclists, traffic lights changing. As you drive, your mind is generating predictions of how the universe around you is likely to manifest: “that car looks likely to pull out in front of me”; “that pedestrian is about to sleepwalk off the sidewalk – be ready to hit the brake”; “the front wheels of that parked car have just turned, so it’s about to move”.

Jesse Levinson, co-founder and CTO of Zoox, on the development of fully autonomous vehicles for mobility-as-a-service

Your power of prediction and anticipation throws a protective buffer zone around you, your passengers, and everyone in your vicinity as you travel from A to B. It is a broad yet very nuanced power, making it incredibly hard to recreate in real-world robotics applications.

Nevertheless, the teams at Zoox have achieved noteworthy success.

The integration of cutting-edge hardware, sensor technology, and bespoke machine learning (ML) approaches has resulted in an autonomous robotaxi that can predict the trajectories of vehicles, people, and even animals in its surroundings, as far as 8 seconds into the future — more than enough to enable the vehicle to make sensible and safe driving decisions.

“Predicting the future — the intentions and movements of other agents in the scene — is a core component of safe, autonomous driving,” says Kai Wang, director of the Zoox Prediction team.

Perceiving, predicting, planning

The AI stack at the center of the Zoox driving system broadly consists of three processes, which occur in order: perception, prediction, and planning. These equate to seeing the world and how everything around the vehicle is currently moving, predicting how everything will move next, and deciding how to move from A to B given those predictions.

The Perception team gathers high-resolution data from the vehicle’s dozens of sensors, which include visual cameras, LiDAR, radar, and longwave-infrared cameras. These sensors, positioned high on the four corners of the vehicle, provide an overlapping, 360-degree field of view that can extend for over a hundred meters. To borrow a popular phrase, this vehicle can see everything, everywhere, all at once.

Related content
Advanced machine learning systems help autonomous vehicles react to unexpected changes.

The robotaxi already contains a detailed semantic map of its environment, called the Zoox Road Network (ZRN), which means it understands everything about local infrastructure, road rules, speed limits, intersection layouts, locations of traffic signals, and so on.

Perception quickly identifies and classifies the other cars, pedestrians, and cyclists in the scene, which are dubbed “agents.” And crucially, it tracks each agent’s velocity and current trajectory. These data are then combined with the ZRN to provide the Zoox vehicle with an incredibly detailed understanding of its environment.

Before these combined data are passed to Prediction, they are instantly boiled down to their essentials, into a format optimized for machine learning. To this end, what Prediction ultimately operates on is a top-down, spatially accurate graphical depiction of the vehicle and all the relevant dynamic and static aspects of its environment: a machine-readable, birds-eye representation of the scene with the robotaxi at the center.

“We draw everything into a 2D image and present it to a convolutional neural network [CNN], which in turn determines what distances matter, what relationships between agents matter, and so on,” says Wang.

Learning from data-rich images

While a human can get the gist of this map, such as the relative positions of all the vehicles (represented by boxes) and pedestrians (different, smaller boxes) in the scene, it is not designed for human consumption, explains Andres Morales, staff software engineer.

zoonsceneprediction.png
A complex scene is converted into an image with many layers, each representing different semantic information. The result is fed into a convolutional neural network to generate predictions.

“This is not an RGB image. It’s got about 60 channels, or layers, which also include semantic information,” he notes. “For example, because someone holding a smartphone tends to behave differently, we might have one channel that represents a pedestrian holding their phone as a ‘1’ and a pedestrian with no phone as a ‘0’.”

From this data-rich image, the ML system produces a probability distribution of potential trajectories for each and every dynamic agent in the scene, from trucks right down to that pet dog milling around near the crosswalk.

These predictions consider not only the current trajectory of each agent, but also include factors such as how cars are expected to behave on given road layouts, what the traffic lights are doing, the workings of crosswalks, and so on.

zooxtruckpredictions.png
An example of a set of predictions for a truck navigating a 3-way intersection. The green boxes represent where the agent could be up to 6 seconds into the future, while the blue box represents where the agent actually went. Each path is a possible future generated by the Prediction system, with an associated likelihood.

These predictions are typically up to about 8 seconds into the future, but they are constantly recalculated every tenth of a second as new information is delivered from Perception.

These weighted predictions are delivered to the Planner aspect of the AI stack — the vehicle’s executive decision-maker — which uses those predictions to help it decide how the Zoox vehicle will operate safely.

From perception through to planning, the whole process is working in real-time; this robotaxi has lightning-quick reactions, should it need them.

Related content
Predicting the future trajectory of a moving agent can be easy when the past trajectory continues smoothly but is challenging when complex interactions with other agents are involved. Recent deep learning approaches for trajectory prediction show promising performance and partially attribute this to successful reasoning about agent-agent interactions. However, it remains unclear which features such black-box

The team can be confident of its predictions because it has a vast pool of data with which to train its ML algorithms — millions of road miles of high-resolution sensor data collected by the Zoox test fleet: Toyota Highlanders retrofitted with an almost identical sensor architecture as the robotaxi mapping and driving autonomously in San Francisco, Seattle, and Las Vegas.

This two framed animation shows Zoox's software making predictions about movements on the left, on the right is the camera view of those same pedestrians crossing the street as the vehicle is stopped
An example of a Zoox vehicle negotiating a busy intersection in Las Vegas at night. The green boxes show the most likely prediction for each agent in the scene as far as 8 seconds into the future.

Zoox has a further advantage.

“We don’t need to label any data by hand, because our data show where things actually moved into the future,” says Wang. “My team doesn’t have a data problem. Our main challenge is that the future is inherently uncertain. Even humans cannot do this task perfectly.”

Utilizing graph neural networks

While perfect prediction is, by its nature, impossible, Wang’s team is currently taking steps on several fronts to raise the vehicle’s prediction capabilities to the next level, firstly by leveraging a graph neural network (GNN) approach.

“Think of the GNN as a message-passing system by which all the agents and static elements in the scene are interconnected,” says Mahsa Ghafarianzadeh, senior software engineer on the Prediction team.

“What this enables is the explicit encoding of the relationships between all the agents in the scene, as well as the Zoox vehicle, and how these relationships might develop into the future.”

One of Zoox’s test vehicles driving autonomously in Las Vegas, the vehicle is traveling down Flamingo Road, there are other cars, several casinos, and a pedestrian bridge in the background
A Zoox test vehicle navigating Las Vegas autonomously.

To give an everyday example, imagine yourself walking down the middle of a long corridor and seeing a stranger walking toward you, also in the middle of the corridor. That act of seeing each other is effectively the passing of a tacit message that would likely cause you both to alter your course slightly, so that by the time you reach each other, you won’t collide or require a sharp course-correction. That’s human nature.

This animation shows the output of Zoox models on the same initial scene but conditioned on different future actions the vehicle (green) is considering. Zoox is able to predict different yielding behavior of other cars based on when their vehicle enters the intersection. The center animation even shows they predict a collision if we were to take that particular action.
This shows the output of Zoox models on the same initial scene but conditioned on different future actions the vehicle (green) is considering. Zoox is able to predict different yielding behavior of other cars based on when their vehicle enters the intersection. The center animation even shows they predict a collision if we were to take that particular action.

So this GNN approach results in the prediction of more natural behaviors between everyone around the Zoox vehicle, because the algorithm, through training on Zoox’s vast pool of real-world road data, is better able to model how agents, on foot or in cars, affect each other’s behavior in the real world.

Related content
Information extraction, drug discovery, and software analysis are just a few applications of this versatile tool.

Another way the Prediction team is improving accuracy is by embracing the fact that what you do as a driver affects other drivers, which in turn affects you. For example, if you get into your parked car and pull out just a little into busy traffic, a driver coming up the road behind you may slow down or stop to let you out, or they may drive straight past, obliging you to wait for a better opportunity.

“Prediction doesn’t happen in a vacuum. Other people’s behaviors are dependent on how their world is changing. If you’re not capturing that within prediction, you’re limiting yourself,” says Wang.

Next steps

Work is now underway to integrate Prediction even more deeply with Planner, creating a feedback loop. Instead of simply receiving predictions and making a decision on how to proceed, the Planner can now interact with Prediction along these lines: “If I perform action X, or Y, or Z, how are the agents in my vicinity likely to adjust their own behavior in each case?”

I’ve seen Prediction grow from being just three source code files implementing basic heuristics to predict trajectories to where it is now, at the cutting edge of deep learning. It’s incredible how fast everything is evolving.
Mahsa Ghafarianzadeh

In this way, the Zoox robotaxi will become even more naturalistic and adept at negotiations with other vehicles, while also creating a smoother-flowing ride for its customers.

“The team and I started to work on this new mode a couple years ago, just as a research project,” says Morales, “and now we’re focused on its integration, ironing everything out, reducing latency, and generally making it production-ready.”

The ever-increasing sophistication of the Zoox robotaxi’s predictive abilities is a clear source of pride for the team dedicated to it.

“I’ve been in this team for over five years. I’ve seen Prediction grow from being just three source code files implementing basic heuristics to predict trajectories to where it is now, at the cutting edge of deep learning. It’s incredible how fast everything is evolving,” says Ghafarianzadeh.

Indeed, at this rate, the Zoox robotaxi may ultimately become the most prescient vehicle on the road. Though that prediction comes with the usual caveat: Nobody can perfectly predict the future.

Research areas

Related content

US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Bellevue
Who are we? Do you want to build Amazon's next $100B business? We're not just joining the shipping industry—we're transforming how billions of packages move across the world every year. Through evolving Amazon's controlled, predictable fulfillment network into a dynamic, adaptive shipping powerhouse we are building an intelligent system that optimizes in real-time to deliver on the promises businesses make to their customers. Our mission goes beyond moving boxes—we're spinning a flywheel where every new package makes our network stronger, faster, and more efficient. As we increase density and scale, we're revolutionizing shipping for businesses while simultaneously strengthening Amazon's own delivery capabilities, driving down costs and increasing speed for our entire ecosystem. What will you do? Amazon shipping is seeking a Senior Data Scientist with strong pricing and machine learning skills to work in an embedded team, partnering closely with commercial, product and tech. This person will be responsible for developing demand prediction models for Amazon shipping’s spot pricing system. As a Senior Data Scientist, you will be part of a science team responsible for improving price discovery across Amazon shipping, measuring the impact of model implementation, and defining a roadmap for improvements and expansion of the models into new unique use cases. This person will be collaborating closely with business and software teams to research, innovate, and solve high impact economics problems facing the worldwide Amazon shipping business. Who are you? The ideal candidate is analytical, resourceful, curious and team oriented, with clear communication skills and the ability to build strong relationships with key stakeholders. You should be a strong owner, are right a lot, and have a proven track record of taking on end-to-end ownership of and successfully delivering complex projects in a fast-paced and dynamic business environment. As this position involves regular interaction with senior leadership (director+), you need to be comfortable communicating at that level while also working directly with various functional teams. Key job responsibilities * Combine ML methodologies with fundamental economics principles to create new pricing algorithms. * Automate price exploration through automated experimentation methodologies, for example using multi-armed bandit strategies. * Partner with other scientists to dynamically predict prices to maximize capacity utilization. * Collaborate with product managers, data scientists, and software developers to incorporate models into production processes and influence senior leaders. * Educate non-technical business leaders on complex modeling concepts, and explain modeling results, implications, and performance in an accessible manner. * Independently identify and pursue new opportunities to leverage economic insights * Opportunity to expand into other domains such as causal analytics, optimization and simulation. About the team Amazon Shipping's pricing team empowers our global business to find strategic harmony between growth and profit tradeoffs, while seeking long term customer value and financial viability. Our people and systems help identify and drive synergy between demand, operational, and economic planning. The breadth of our problems range from CEO-level strategic support to in-depth mathematical experimentation and optimization. Excited by the intersection of data and large scale strategic decision-making? This is the team for you!
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.
US, VA, Arlington
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. Join a sizeable team of data scientists, research scientists, and machine learning engineers that develop vision language models (VLMs) on overhead imagery for a high-impact government customer. We own the entire machine learning development life cycle, developing models on customer data: - Exploring the data and brainstorming and prioritizing ideas for model development - Implementing new features - Training models in support of experimental or performance goals - T&E-ing, packaging, and delivering models We perform this work on both unclassified and classified networks, with portions of our team working on each network. We seek a new team member to work on the classified networks. You would work collaboratively with teammates to develop and use a python codebase for fine-tuning VLMs. You would have great opportunities to learn from team members and technical leads, while also having opportunities for ownership of important project workflows. You would work with Jupyter Notebooks, the Linux command line, GitLab, and Visual Studio Code. Key job responsibilities With support from technical leads, carry out tasking across the entire machine learning development lifecycle to fine-tune VLMs on overhead imagery: - Run data conversion pipelines to transform customer data into the structure needed by models for training - Perform EDA on the customer data - Train VLMs on overhead imagery - Develop and implement hyper-parameter optimization strategies - Test and Evaluate models and analyze results - Package and deliver models to the customer - Implement new features to the code base - Collaborate with the rest of the team on long term strategy and short-medium term implementation. - Contribute to presentations to the customer regarding the team’s work.
US, VA, Arlington
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. Join a sizeable team of data scientists, research scientists, and machine learning engineers that develop computer vision models on overhead imagery for a high-impact government customer. We own the entire machine learning development life cycle, developing models on customer data: - Exploring the data and brainstorming and prioritizing ideas for model development - Implementing new features in our sizable code base - Training models in support of experimental or performance goals - T&E-ing, packaging, and delivering models We perform this work on both unclassified and classified networks, with portions of our team working on each network. We seek a new team member to work on the classified networks. Three to four days a week, you would travel to the customer site in Northern Virginia to perform tasking as described below. Weekdays when you do not travel to the customer site, you would work from your local Amazon office. You would work collaboratively with teammates to use and contribute to a well-maintained code base that the team has developed over the last several years, almost entirely in python. You would have great opportunities to learn from team members and technical leads, while also having opportunities for ownership of important project workflows. You would work with Jupyter Notebooks, the Linux command line, Apache AirFlow, GitLab, and Visual Studio Code. We are a very collaborative team, and regularly teach and learn from each other, so, if you are familiar with some of these technologies, but unfamiliar with others, we encourage you to apply - especially if you are someone who likes to learn. We are always learning on the job ourselves. Key job responsibilities With support from technical leads, carry out tasking across the entire machine learning development lifecycle to develop computer vision models on overhead imagery: - Run data conversion pipelines to transform customer data into the structure needed by models for training - Perform EDA on the customer data - Train deep neural network models on overhead imagery - Develop and implement hyper-parameter optimization strategies - Test and Evaluate models and analyze results - Package and deliver models to the customer - Incorporate model R&D from low-side researchers - Implement new features to the model development code base - Collaborate with the rest of the team on long term strategy and short-medium term implementation. - Contribute to presentations to the customer regarding the team’s work.
US, MA, N.reading
Amazon Industrial Robotics (AIR) is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of the latest software and AI tools for robots. We are seeking an expert to lead the development of our SLAM and Spatial AI module. In this role, you will create methods that will enable our robot to perceive the environment and navigate with unrivaled vision and fidelity. The system will combine an array of diverse sensors with simultaneous localization and mapping software that continuously updates the map in real-time automatically. It will have the capability to ‘see’ and identify different objects, people, vehicles, and places as it moves and react to moving people and vehicles in an intelligent way. The system combines a mix of high-performance sensors with simultaneous localization and mapping software that builds and continuously updates maps in real-time, completely automatically. It has the capability to ‘see’ and identify different objects, people, vehicles, and places as it moves and react to moving people and vehicles in an intelligent way. Key job responsibilities - Analyze, design, develop, and test existing and new perception capabilities using cameras and LIDAR sensor inputs for obstacle detection and semantic understanding. - Research, design, implement and evaluate scientific approaches to a variety of autonomy challenges.. - Create experiments and prototype implementations of new perception algorithms. - Deliver high quality production level code (C++ or Python) and support systems in production. - Collaborate with other functional teams in a robotics organization. - Collaborate closely with hardware engineering team members on developing systems from prototyping to production level. - Represent Amazon in academia community through publications and scientific presentations. - Work with stakeholders across hardware, science, and operations teams to iterate on systems design and implementation.
US, WA, Bellevue
Why this job is awesome? - This is SUPER high-visibility work: Our mission is to provide consistent, accurate, and relevant delivery information to every single page on every Amazon-owned site. - MILLIONS of customers will be impacted by your contributions: The changes we make directly impact the customer experience on every Amazon site. This is a great position for someone who likes to leverage Machine learning technologies to solve the real customer problems, and also wants to see and measure their direct impact on customers. - We are a cross-functional team that owns the ENTIRE delivery experience for customers: From the business requirements to the technical systems that allow us to directly affect the on-site experience from a central service, business and technical team members are integrated so everyone is involved through the entire development process. - Do you want to join an innovative team of scientists and engineers who use optimization, machine learning and Gen-AI techniques to deliver the best delivery experience on every Amazon-owned site? - Are you excited by the prospect of analyzing and modeling terabytes of data on the cloud and create state-of-art algorithms to solve real world problems? - Do you like to own end-to-end business problems/metrics and directly impact the same-day delivery service of Amazon? - Do you like to innovate and simplify? If yes, then you may be a great fit to join the Delivery Experience Machine Learning team! Key job responsibilities · Research and implement Optimization, ML and Gen-AI techniques to create scalable and effective models in Delivery Experience (DEX) systems · Design and develop optimization models and reinforcement learning models to improve quality of same-day selections · Apply LLM technology to empower CX features · Establishing scalable, efficient, automated processes for large scale data analysis and causal inference
US, CA, San Francisco
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!