zooxsensors.png
State-of-the-art sensors placed on each corner of the Zoox robotaxi enable it to ‘see’ in all directions simultaneously.

How the Zoox robotaxi predicts everything, everywhere, all at once

A combination of cutting-edge hardware, sensor technology, and bespoke machine learning approaches can predict trajectories of vehicles, people, and even animals, as far as 8 seconds into the future.

We humans often lament that we cannot predict the future, but perhaps we don’t give ourselves quite enough credit. With sufficient practice, our short-term predictive skills become truly remarkable.

Driving is a good example, particularly in urban environments. Navigating through a city, you become aware of a colossal number of dynamic aspects in your surroundings. The other cars — some moving, some stationary — pedestrians, cyclists, traffic lights changing. As you drive, your mind is generating predictions of how the universe around you is likely to manifest: “that car looks likely to pull out in front of me”; “that pedestrian is about to sleepwalk off the sidewalk – be ready to hit the brake”; “the front wheels of that parked car have just turned, so it’s about to move”.

Jesse Levinson, co-founder and CTO of Zoox, on the development of fully autonomous vehicles for mobility-as-a-service

Your power of prediction and anticipation throws a protective buffer zone around you, your passengers, and everyone in your vicinity as you travel from A to B. It is a broad yet very nuanced power, making it incredibly hard to recreate in real-world robotics applications.

Nevertheless, the teams at Zoox have achieved noteworthy success.

The integration of cutting-edge hardware, sensor technology, and bespoke machine learning (ML) approaches has resulted in an autonomous robotaxi that can predict the trajectories of vehicles, people, and even animals in its surroundings, as far as 8 seconds into the future — more than enough to enable the vehicle to make sensible and safe driving decisions.

“Predicting the future — the intentions and movements of other agents in the scene — is a core component of safe, autonomous driving,” says Kai Wang, director of the Zoox Prediction team.

Perceiving, predicting, planning

The AI stack at the center of the Zoox driving system broadly consists of three processes, which occur in order: perception, prediction, and planning. These equate to seeing the world and how everything around the vehicle is currently moving, predicting how everything will move next, and deciding how to move from A to B given those predictions.

The Perception team gathers high-resolution data from the vehicle’s dozens of sensors, which include visual cameras, LiDAR, radar, and longwave-infrared cameras. These sensors, positioned high on the four corners of the vehicle, provide an overlapping, 360-degree field of view that can extend for over a hundred meters. To borrow a popular phrase, this vehicle can see everything, everywhere, all at once.

Related content
Advanced machine learning systems help autonomous vehicles react to unexpected changes.

The robotaxi already contains a detailed semantic map of its environment, called the Zoox Road Network (ZRN), which means it understands everything about local infrastructure, road rules, speed limits, intersection layouts, locations of traffic signals, and so on.

Perception quickly identifies and classifies the other cars, pedestrians, and cyclists in the scene, which are dubbed “agents.” And crucially, it tracks each agent’s velocity and current trajectory. These data are then combined with the ZRN to provide the Zoox vehicle with an incredibly detailed understanding of its environment.

Before these combined data are passed to Prediction, they are instantly boiled down to their essentials, into a format optimized for machine learning. To this end, what Prediction ultimately operates on is a top-down, spatially accurate graphical depiction of the vehicle and all the relevant dynamic and static aspects of its environment: a machine-readable, birds-eye representation of the scene with the robotaxi at the center.

“We draw everything into a 2D image and present it to a convolutional neural network [CNN], which in turn determines what distances matter, what relationships between agents matter, and so on,” says Wang.

Learning from data-rich images

While a human can get the gist of this map, such as the relative positions of all the vehicles (represented by boxes) and pedestrians (different, smaller boxes) in the scene, it is not designed for human consumption, explains Andres Morales, staff software engineer.

zoonsceneprediction.png
A complex scene is converted into an image with many layers, each representing different semantic information. The result is fed into a convolutional neural network to generate predictions.

“This is not an RGB image. It’s got about 60 channels, or layers, which also include semantic information,” he notes. “For example, because someone holding a smartphone tends to behave differently, we might have one channel that represents a pedestrian holding their phone as a ‘1’ and a pedestrian with no phone as a ‘0’.”

From this data-rich image, the ML system produces a probability distribution of potential trajectories for each and every dynamic agent in the scene, from trucks right down to that pet dog milling around near the crosswalk.

These predictions consider not only the current trajectory of each agent, but also include factors such as how cars are expected to behave on given road layouts, what the traffic lights are doing, the workings of crosswalks, and so on.

zooxtruckpredictions.png
An example of a set of predictions for a truck navigating a 3-way intersection. The green boxes represent where the agent could be up to 6 seconds into the future, while the blue box represents where the agent actually went. Each path is a possible future generated by the Prediction system, with an associated likelihood.

These predictions are typically up to about 8 seconds into the future, but they are constantly recalculated every tenth of a second as new information is delivered from Perception.

These weighted predictions are delivered to the Planner aspect of the AI stack — the vehicle’s executive decision-maker — which uses those predictions to help it decide how the Zoox vehicle will operate safely.

From perception through to planning, the whole process is working in real-time; this robotaxi has lightning-quick reactions, should it need them.

Related content
Predicting the future trajectory of a moving agent can be easy when the past trajectory continues smoothly but is challenging when complex interactions with other agents are involved. Recent deep learning approaches for trajectory prediction show promising performance and partially attribute this to successful reasoning about agent-agent interactions. However, it remains unclear which features such black-box

The team can be confident of its predictions because it has a vast pool of data with which to train its ML algorithms — millions of road miles of high-resolution sensor data collected by the Zoox test fleet: Toyota Highlanders retrofitted with an almost identical sensor architecture as the robotaxi mapping and driving autonomously in San Francisco, Seattle, and Las Vegas.

This two framed animation shows Zoox's software making predictions about movements on the left, on the right is the camera view of those same pedestrians crossing the street as the vehicle is stopped
An example of a Zoox vehicle negotiating a busy intersection in Las Vegas at night. The green boxes show the most likely prediction for each agent in the scene as far as 8 seconds into the future.

Zoox has a further advantage.

“We don’t need to label any data by hand, because our data show where things actually moved into the future,” says Wang. “My team doesn’t have a data problem. Our main challenge is that the future is inherently uncertain. Even humans cannot do this task perfectly.”

Utilizing graph neural networks

While perfect prediction is, by its nature, impossible, Wang’s team is currently taking steps on several fronts to raise the vehicle’s prediction capabilities to the next level, firstly by leveraging a graph neural network (GNN) approach.

“Think of the GNN as a message-passing system by which all the agents and static elements in the scene are interconnected,” says Mahsa Ghafarianzadeh, senior software engineer on the Prediction team.

“What this enables is the explicit encoding of the relationships between all the agents in the scene, as well as the Zoox vehicle, and how these relationships might develop into the future.”

One of Zoox’s test vehicles driving autonomously in Las Vegas, the vehicle is traveling down Flamingo Road, there are other cars, several casinos, and a pedestrian bridge in the background
A Zoox test vehicle navigating Las Vegas autonomously.

To give an everyday example, imagine yourself walking down the middle of a long corridor and seeing a stranger walking toward you, also in the middle of the corridor. That act of seeing each other is effectively the passing of a tacit message that would likely cause you both to alter your course slightly, so that by the time you reach each other, you won’t collide or require a sharp course-correction. That’s human nature.

This animation shows the output of Zoox models on the same initial scene but conditioned on different future actions the vehicle (green) is considering. Zoox is able to predict different yielding behavior of other cars based on when their vehicle enters the intersection. The center animation even shows they predict a collision if we were to take that particular action.
This shows the output of Zoox models on the same initial scene but conditioned on different future actions the vehicle (green) is considering. Zoox is able to predict different yielding behavior of other cars based on when their vehicle enters the intersection. The center animation even shows they predict a collision if we were to take that particular action.

So this GNN approach results in the prediction of more natural behaviors between everyone around the Zoox vehicle, because the algorithm, through training on Zoox’s vast pool of real-world road data, is better able to model how agents, on foot or in cars, affect each other’s behavior in the real world.

Related content
Information extraction, drug discovery, and software analysis are just a few applications of this versatile tool.

Another way the Prediction team is improving accuracy is by embracing the fact that what you do as a driver affects other drivers, which in turn affects you. For example, if you get into your parked car and pull out just a little into busy traffic, a driver coming up the road behind you may slow down or stop to let you out, or they may drive straight past, obliging you to wait for a better opportunity.

“Prediction doesn’t happen in a vacuum. Other people’s behaviors are dependent on how their world is changing. If you’re not capturing that within prediction, you’re limiting yourself,” says Wang.

Next steps

Work is now underway to integrate Prediction even more deeply with Planner, creating a feedback loop. Instead of simply receiving predictions and making a decision on how to proceed, the Planner can now interact with Prediction along these lines: “If I perform action X, or Y, or Z, how are the agents in my vicinity likely to adjust their own behavior in each case?”

I’ve seen Prediction grow from being just three source code files implementing basic heuristics to predict trajectories to where it is now, at the cutting edge of deep learning. It’s incredible how fast everything is evolving.
Mahsa Ghafarianzadeh

In this way, the Zoox robotaxi will become even more naturalistic and adept at negotiations with other vehicles, while also creating a smoother-flowing ride for its customers.

“The team and I started to work on this new mode a couple years ago, just as a research project,” says Morales, “and now we’re focused on its integration, ironing everything out, reducing latency, and generally making it production-ready.”

The ever-increasing sophistication of the Zoox robotaxi’s predictive abilities is a clear source of pride for the team dedicated to it.

“I’ve been in this team for over five years. I’ve seen Prediction grow from being just three source code files implementing basic heuristics to predict trajectories to where it is now, at the cutting edge of deep learning. It’s incredible how fast everything is evolving,” says Ghafarianzadeh.

Indeed, at this rate, the Zoox robotaxi may ultimately become the most prescient vehicle on the road. Though that prediction comes with the usual caveat: Nobody can perfectly predict the future.

Research areas

Related content

IN, KA, Bangalore
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences
US, NY, New York
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in the Sponsored Products organization builds GenAI-based shopper understanding and audience targeting systems, along with advanced deep-learning models for Click-through Rate (CTR) and Conversion Rate (CVR) predictions. We develop large-scale machine-learning (ML) pipelines and real-time serving infrastructure to match shoppers' intent with relevant ads across all devices, contexts, and marketplaces. Through precise estimation of shoppers' interactions with ads and their long-term value, we aim to drive optimal ad allocation and pricing, helping to deliver a relevant, engaging, and delightful advertising experience to Amazon shoppers. As our business grows and we undertake increasingly complex initiatives, we are looking for entrepreneurial, and self-driven science leaders to join our team. Key job responsibilities As a Principal Applied Scientist in the team, you will: * Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business via principled ML solutions. * Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in ML. * Design and lead organization wide ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our sellers. * Work with our engineering partners and draw upon your experience to meet latency and other system constraints. * Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. * Be responsible for communicating our ML innovations to the broader internal & external scientific community.
CA, BC, Vancouver
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Global Hiring Science owns and develops products and services using Artificial Intelligence and Machine Learning (ML) that enhance recruitment. We collaborate with scientists to build and maintain machine learning solutions for hiring, offering opportunities to both apply and develop ML engineering skills in a production environment. Key job responsibilities • Design and implement advanced AI models using the latest LLM and GenAI technologies to develop fair and accurate machine learning models for hiring. • Clearly and cogently present your work and ideas, and respond effectively to feedback. • Collaborate with cross-functional teams with Research Scientists and Software Engineers to integrate AI-driven products into Amazon’s hiring process. • Stay at the advance of AI research, continuously exploring and implementing new techniques in NLP, LLMs, and GenAI to drive innovation in hiring. • Implement advanced natural language processing models to extract insights from diverse data sources. • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities. • Contribute to the scientific community through publications, presentations, and collaborations with academic institutions. About the team The mission of Global Hiring Science (GHS) is to improve both the efficiency and effectiveness of hiring across Amazon with assessments and interview improvements. We are a team of experts in machine learning, industrial-organizational psychology, data science, and measuring the knowledge, skills, and abilities that it takes to be successful at Amazon.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, WA, Seattle
PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.
US, CA, San Francisco
The Amazon General Intelligence “AGI” organization is looking for an Executive Assistant to support leaders of our Autonomy Team in our growing AI Lab space located in San Francisco. This role is ideal for exceptionally talented, dependable, customer-obsessed, and self-motivated individuals eager to work in a fast paced, exciting and growing team. This role serves as a strategic business partner, managing complex executive operations across the AGI organization. The position requires superior attention to detail, ability to meet tight deadlines, excellent organizational skills, and juggling multiple critical requests while proactively anticipating needs and driving improvements. High integrity, discretion with confidential information, and professionalism are essential. The successful candidate will complete complex tasks and projects quickly with minimal guidance, react with appropriate urgency, and take effective action while navigating ambiguity. Flexibility to change direction at a moment's notice is critical for success in this role. Key job responsibilities - Serve as strategic partner to senior leadership, identifying opportunities to improve organizational effectiveness and drive operational excellence - Manage complex calendars and scheduling for multiple executives - Drive continuous improvement through process optimization and new mechanisms - Coordinate team activities including staff meetings, offsites, and events - Schedule and manage cost-effective travel - Attend key meetings, track deliverables, and ensure timely follow-up - Create expense reports and manage budget tracking - Serve as liaison between executives and internal/external stakeholders - Build collaborative relationships with Executive Assistants across the company and with critical external partners - Help us build a great team culture in the SF Lab!
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
ES, B, Barcelona
Are you interested in defining the science strategy that enables Amazon to market to millions of customers based on their lifecycle needs rather than one-size-fits-all campaigns? We are seeking a Senior Applied Scientist to lead the science strategy for our Lifecycle Marketing Experimentation roadmap within the PRIMAS (Prime & Marketing analytics and science) team. The position is open to candidates in Amsterdam and Barcelona. In this role, you will own the end-to-end science approach that enables EU marketing to shift from broad, generic campaigns to targeted, cohort-based marketing that changes customer behavior. This is a high-ambiguity, high-impact role where you will define what problems are worth solving, build the science foundation from scratch, and influence senior business leaders on marketing strategy. You will work directly with Business Directors and channel leaders to solve critical business problems: how do we win back customers lost to competitors, convert Young Adults to Prime, and optimize marketing spend by de-averaging across customer cohorts. Key job responsibilities Science Strategy & Leadership: 1. Own the end-to-end science strategy for lifecycle marketing, defining the roadmap across audience targeting, behavioral modeling, and measurement 2. Navigate high ambiguity in defining customer journey frameworks and behavioral models – our most challenging science problem with no established playbook 3. Lead strategic discussions with business leaders translating business needs into science solutions and building trust across business and tech partners 4. Mentor and guide a team of 2-3 scientists and BIEs on technical execution while contributing hands-on to the hardest problems Advanced Customer Behavior Modeling: 1. Build sophisticated propensity models identifying customer cohorts based on lifecycle stage and complex behavioral patterns (e.g., Bargain hunters, Young adults Prime prospects) 2. Define customer journey frameworks using advanced techniques (Hidden Markov Models, sequential decision-making) to model how customers transition across lifecycle stages 3. Identify which customer behaviors and triggers drive lifecycle progression and what messaging/levers are most effective for each cohort 4. Integrate 1P behavioral data with 2P survey insights to create rich, actionable audience definitions Measurement & Cross-Workstream Integration: 1. Partner with measurement scientist to design experiments (RCTs) that isolate audience targeting effects from creative effects 2. Ensure audience definitions, journey models, and measurement frameworks work coherently across Meta, LiveRamp, and owned channels 3. Establish feedback loops connecting measurement insights back to model improvements About the team The PRIMAS (Prime & Marketing Analytics and Science) is the team that support the science & analytics needs of the EU Prime and Marketing organization, an org that supports the Prime and Marketing programs in European marketplaces and comprises 250-300 employees. The PRIMAS team, is part of a larger tech tech team of 100+ people called WIMSI (WW Integrated Marketing Systems and Intelligence). WIMSI core mission is to accelerate marketing technology capabilities that enable de-averaged customer experiences across the marketing funnel: awareness, consideration, and conversion.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for Amazon, working with other acclaimed engineers and scientists. Key job responsibilities Join us to work as an integral part of a team that has diverse experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.