zooxsensors.png
State-of-the-art sensors placed on each corner of the Zoox robotaxi enable it to ‘see’ in all directions simultaneously.

How the Zoox robotaxi predicts everything, everywhere, all at once

A combination of cutting-edge hardware, sensor technology, and bespoke machine learning approaches can predict trajectories of vehicles, people, and even animals, as far as 8 seconds into the future.

We humans often lament that we cannot predict the future, but perhaps we don’t give ourselves quite enough credit. With sufficient practice, our short-term predictive skills become truly remarkable.

Driving is a good example, particularly in urban environments. Navigating through a city, you become aware of a colossal number of dynamic aspects in your surroundings. The other cars — some moving, some stationary — pedestrians, cyclists, traffic lights changing. As you drive, your mind is generating predictions of how the universe around you is likely to manifest: “that car looks likely to pull out in front of me”; “that pedestrian is about to sleepwalk off the sidewalk – be ready to hit the brake”; “the front wheels of that parked car have just turned, so it’s about to move”.

Jesse Levinson, co-founder and CTO of Zoox, on the development of fully autonomous vehicles for mobility-as-a-service

Your power of prediction and anticipation throws a protective buffer zone around you, your passengers, and everyone in your vicinity as you travel from A to B. It is a broad yet very nuanced power, making it incredibly hard to recreate in real-world robotics applications.

Nevertheless, the teams at Zoox have achieved noteworthy success.

The integration of cutting-edge hardware, sensor technology, and bespoke machine learning (ML) approaches has resulted in an autonomous robotaxi that can predict the trajectories of vehicles, people, and even animals in its surroundings, as far as 8 seconds into the future — more than enough to enable the vehicle to make sensible and safe driving decisions.

“Predicting the future — the intentions and movements of other agents in the scene — is a core component of safe, autonomous driving,” says Kai Wang, director of the Zoox Prediction team.

Perceiving, predicting, planning

The AI stack at the center of the Zoox driving system broadly consists of three processes, which occur in order: perception, prediction, and planning. These equate to seeing the world and how everything around the vehicle is currently moving, predicting how everything will move next, and deciding how to move from A to B given those predictions.

The Perception team gathers high-resolution data from the vehicle’s dozens of sensors, which include visual cameras, LiDAR, radar, and longwave-infrared cameras. These sensors, positioned high on the four corners of the vehicle, provide an overlapping, 360-degree field of view that can extend for over a hundred meters. To borrow a popular phrase, this vehicle can see everything, everywhere, all at once.

Related content
Advanced machine learning systems help autonomous vehicles react to unexpected changes.

The robotaxi already contains a detailed semantic map of its environment, called the Zoox Road Network (ZRN), which means it understands everything about local infrastructure, road rules, speed limits, intersection layouts, locations of traffic signals, and so on.

Perception quickly identifies and classifies the other cars, pedestrians, and cyclists in the scene, which are dubbed “agents.” And crucially, it tracks each agent’s velocity and current trajectory. These data are then combined with the ZRN to provide the Zoox vehicle with an incredibly detailed understanding of its environment.

Before these combined data are passed to Prediction, they are instantly boiled down to their essentials, into a format optimized for machine learning. To this end, what Prediction ultimately operates on is a top-down, spatially accurate graphical depiction of the vehicle and all the relevant dynamic and static aspects of its environment: a machine-readable, birds-eye representation of the scene with the robotaxi at the center.

“We draw everything into a 2D image and present it to a convolutional neural network [CNN], which in turn determines what distances matter, what relationships between agents matter, and so on,” says Wang.

Learning from data-rich images

While a human can get the gist of this map, such as the relative positions of all the vehicles (represented by boxes) and pedestrians (different, smaller boxes) in the scene, it is not designed for human consumption, explains Andres Morales, staff software engineer.

zoonsceneprediction.png
A complex scene is converted into an image with many layers, each representing different semantic information. The result is fed into a convolutional neural network to generate predictions.

“This is not an RGB image. It’s got about 60 channels, or layers, which also include semantic information,” he notes. “For example, because someone holding a smartphone tends to behave differently, we might have one channel that represents a pedestrian holding their phone as a ‘1’ and a pedestrian with no phone as a ‘0’.”

From this data-rich image, the ML system produces a probability distribution of potential trajectories for each and every dynamic agent in the scene, from trucks right down to that pet dog milling around near the crosswalk.

These predictions consider not only the current trajectory of each agent, but also include factors such as how cars are expected to behave on given road layouts, what the traffic lights are doing, the workings of crosswalks, and so on.

zooxtruckpredictions.png
An example of a set of predictions for a truck navigating a 3-way intersection. The green boxes represent where the agent could be up to 6 seconds into the future, while the blue box represents where the agent actually went. Each path is a possible future generated by the Prediction system, with an associated likelihood.

These predictions are typically up to about 8 seconds into the future, but they are constantly recalculated every tenth of a second as new information is delivered from Perception.

These weighted predictions are delivered to the Planner aspect of the AI stack — the vehicle’s executive decision-maker — which uses those predictions to help it decide how the Zoox vehicle will operate safely.

From perception through to planning, the whole process is working in real-time; this robotaxi has lightning-quick reactions, should it need them.

Related content
Predicting the future trajectory of a moving agent can be easy when the past trajectory continues smoothly but is challenging when complex interactions with other agents are involved. Recent deep learning approaches for trajectory prediction show promising performance and partially attribute this to successful reasoning about agent-agent interactions. However, it remains unclear which features such black-box

The team can be confident of its predictions because it has a vast pool of data with which to train its ML algorithms — millions of road miles of high-resolution sensor data collected by the Zoox test fleet: Toyota Highlanders retrofitted with an almost identical sensor architecture as the robotaxi mapping and driving autonomously in San Francisco, Seattle, and Las Vegas.

This two framed animation shows Zoox's software making predictions about movements on the left, on the right is the camera view of those same pedestrians crossing the street as the vehicle is stopped
An example of a Zoox vehicle negotiating a busy intersection in Las Vegas at night. The green boxes show the most likely prediction for each agent in the scene as far as 8 seconds into the future.

Zoox has a further advantage.

“We don’t need to label any data by hand, because our data show where things actually moved into the future,” says Wang. “My team doesn’t have a data problem. Our main challenge is that the future is inherently uncertain. Even humans cannot do this task perfectly.”

Utilizing graph neural networks

While perfect prediction is, by its nature, impossible, Wang’s team is currently taking steps on several fronts to raise the vehicle’s prediction capabilities to the next level, firstly by leveraging a graph neural network (GNN) approach.

“Think of the GNN as a message-passing system by which all the agents and static elements in the scene are interconnected,” says Mahsa Ghafarianzadeh, senior software engineer on the Prediction team.

“What this enables is the explicit encoding of the relationships between all the agents in the scene, as well as the Zoox vehicle, and how these relationships might develop into the future.”

One of Zoox’s test vehicles driving autonomously in Las Vegas, the vehicle is traveling down Flamingo Road, there are other cars, several casinos, and a pedestrian bridge in the background
A Zoox test vehicle navigating Las Vegas autonomously.

To give an everyday example, imagine yourself walking down the middle of a long corridor and seeing a stranger walking toward you, also in the middle of the corridor. That act of seeing each other is effectively the passing of a tacit message that would likely cause you both to alter your course slightly, so that by the time you reach each other, you won’t collide or require a sharp course-correction. That’s human nature.

This animation shows the output of Zoox models on the same initial scene but conditioned on different future actions the vehicle (green) is considering. Zoox is able to predict different yielding behavior of other cars based on when their vehicle enters the intersection. The center animation even shows they predict a collision if we were to take that particular action.
This shows the output of Zoox models on the same initial scene but conditioned on different future actions the vehicle (green) is considering. Zoox is able to predict different yielding behavior of other cars based on when their vehicle enters the intersection. The center animation even shows they predict a collision if we were to take that particular action.

So this GNN approach results in the prediction of more natural behaviors between everyone around the Zoox vehicle, because the algorithm, through training on Zoox’s vast pool of real-world road data, is better able to model how agents, on foot or in cars, affect each other’s behavior in the real world.

Related content
Information extraction, drug discovery, and software analysis are just a few applications of this versatile tool.

Another way the Prediction team is improving accuracy is by embracing the fact that what you do as a driver affects other drivers, which in turn affects you. For example, if you get into your parked car and pull out just a little into busy traffic, a driver coming up the road behind you may slow down or stop to let you out, or they may drive straight past, obliging you to wait for a better opportunity.

“Prediction doesn’t happen in a vacuum. Other people’s behaviors are dependent on how their world is changing. If you’re not capturing that within prediction, you’re limiting yourself,” says Wang.

Next steps

Work is now underway to integrate Prediction even more deeply with Planner, creating a feedback loop. Instead of simply receiving predictions and making a decision on how to proceed, the Planner can now interact with Prediction along these lines: “If I perform action X, or Y, or Z, how are the agents in my vicinity likely to adjust their own behavior in each case?”

I’ve seen Prediction grow from being just three source code files implementing basic heuristics to predict trajectories to where it is now, at the cutting edge of deep learning. It’s incredible how fast everything is evolving.
Mahsa Ghafarianzadeh

In this way, the Zoox robotaxi will become even more naturalistic and adept at negotiations with other vehicles, while also creating a smoother-flowing ride for its customers.

“The team and I started to work on this new mode a couple years ago, just as a research project,” says Morales, “and now we’re focused on its integration, ironing everything out, reducing latency, and generally making it production-ready.”

The ever-increasing sophistication of the Zoox robotaxi’s predictive abilities is a clear source of pride for the team dedicated to it.

“I’ve been in this team for over five years. I’ve seen Prediction grow from being just three source code files implementing basic heuristics to predict trajectories to where it is now, at the cutting edge of deep learning. It’s incredible how fast everything is evolving,” says Ghafarianzadeh.

Indeed, at this rate, the Zoox robotaxi may ultimately become the most prescient vehicle on the road. Though that prediction comes with the usual caveat: Nobody can perfectly predict the future.

Research areas

Related content

US, WA, Seattle
Come be a part of a rapidly expanding $35 billion-dollar global business. At Amazon Business, a fast-growing startup passionate about building solutions, we set out every day to innovate and disrupt the status quo. We stand at the intersection of tech & retail in the B2B space developing innovative purchasing and procurement solutions to help businesses and organizations thrive. At Amazon Business, we strive to be the most recognized and preferred strategic partner for smart business buying. Bring your insight, imagination and a healthy disregard for the impossible. Join us in building and celebrating the value of Amazon Business to buyers and sellers of all sizes and industries. Unlock your career potential. The AB Sales Analytics, Data, Product and Tech (ADAPTech) team uses CRM, data, product, and science to improve Sales productivity and performance. It has four pillars: 1) SalesTech maintains Salesforce to enable Sales workflows, and supports >2K users in nine countries; 2) Product and Science builds tools embedded with bespoke Machine Learning (ML) and GenAI large language models to enable sales reps to prioritize top accounts, position the right Amazon Business (AB) product features, and take actions based on critical customer events; 3) Sales Data Management (SDM) and Sales Account Management (SAM) enrich customer profiles and business hierarchies while improving productivity through automation and integration of internal/external tools; and 4) Business Intelligence (BI) enables self-service reporting simplifying access to key insights through WBRs and dashboards. Sales teams leverage these products to identify which customers to target, what features to target them with, and when to target them, in order to capture their share of wallet. A successful Applied Scientist at Amazon demonstrates bias for action and operates in a startup environment, with outstanding leadership skills, and proven ability to build and manage medium-scale modeling projects, identify data requirements, build methodology and tools that are statistically grounded. We need great leaders to think big and design new solutions to solve complex problems using machine learning (ML) and Generative AI techniques to improve our customers’ experience when using AB. You have hands-on experience making the right decisions about technology, models and methodology choices. Key job responsibilities As an Applied Scientist, you will primarily leverage machine learning techniques and generative AI to outreach customers based on their life cycle stage, behavioral patterns, and purchase history. You may also perform text mining and insight analysis of real-time customer conversations and make the model learn and recommend the solutions. Your work will directly impact the trust customers place in Amazon Business. You will partner with product management and technical leadership to identify opportunities to innovate customer journey experiences. You will identify new areas of investment and work to align product roadmaps to deliver on these opportunities. As a science leader, you will not only develop unique scientific solutions, but also play a crucial role in shaping strategies. Additional responsibilities include: -Design, implement, test, deploy and maintain innovative data and machine learning solutions to further the customer experience. -Create experiments and prototype implementations of new learning algorithms and prediction techniques -Develop algorithms for new capabilities and trace decisions in the data and assess how proposed changes could potentially impact business metrics to cater needs of Amazon Business Sales -Build models that measure incremental value, predict growth, define and conduct experiments to optimize engagement of AB customers, and communicate insights and recommendations to product, sales, and finance partners. A day in the life In this role, you will be a technical expert with significant scope and impact. You will work with Technical Product Managers, Data Engineers, other Scientists, and Salesforce developers, to build new and enhance existing ML models to optimize customer experience. You will prototype and test new ideas, iterate quickly, and deploy models to production. Also, you will conduct in-depth data analysis and feature engineering to build robust ML models.
NL, Amsterdam
Are you a MS or PhD student interested in a 2025 Internship in the field of machine learning, deep learning, speech, robotics, computer vision, optimization, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact, visionary person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain, UAE, and UK). Please note these are not remote internships.
US, WA, Bellevue
Amazon Web Services (AWS) offers a broad set of global compute, storage, database, analytics, application, and deployment services that help organizations move faster, lower IT costs, and scale applications. These services are trusted by the largest enterprises and the hottest start-ups to power a wide variety of workloads including web and mobile applications, data processing and warehousing, storage, archive, and many others. We are looking for an applied scientist to help us define and build a new enterprise application. AWS Applications is building services in Supply Chain Management and is looking for a scientist to tackle complex science problems in Supply Chain including demand planning, supply planning and sustainability which will be used by our customers across a wide range of industries. We operate a fast growing business and our journey has only started. Our mission is to build the most efficient and optimal supply chain software on the planet, using our science and technology as our biggest advantage. We aim to leverage cutting edge technologies in optimization, operations research, and machine learning to grow our businesses. As an Applied Scientist, you’ll design, model, develop and implement state-of-the-art models and solutions used by users worldwide. As part of your role you will regularly interact with software engineering teams and business leadership. The focus of this role is to research, develop, and deploy models to improve state-of-the-art for time series. You will have the opportunity to work on our assistant solution allowing our users to ask data questions in natural language and get intelligent insights and exceptions. Key job responsibilities Lead and partner with the engineering to drive modeling and technical design for complex business problems. Develop accurate and scalable machine learning models to solve our hardest supply chain problems. Lead complex modeling analyses to aid management in making key business decisions and set product direction. A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, WA, Seattle
We are building GenAI based shopping assistant for Amazon. We reimage Amazon Search with an interactive conversational experience that helps you find answers to product questions, perform product comparisons, receive personalized product suggestions, and so much more, to easily find the perfect product for your needs. We’re looking for the best and brightest across Amazon to help us realize and deliver this vision to our customers right away. This will be a once in a generation transformation for Search, just like the Mosaic browser made the Internet easier to engage with three decades ago. If you missed the 90s—WWW, Mosaic, and the founding of Amazon and Google—you don’t want to miss this opportunity.
US, WA, Seattle
Our team's mission is to improve Shopping experience for customers interacting with Amazon devices via voice. We work with Alexa and multiple other teams to research and develop advanced state-of-the-art speech technologies. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. Key job responsibilities We are looking for a passionate, talented, and inventive Research Scientist with a background in Machine Learning to help build industry-leading Speech and Language technology. As a Research Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech synthesis. Position Responsibilities: * Participate in the design, development, evaluation, deployment and updating of data-driven models for Speech and Language applications. * Participate in research activities including the application and evaluation of Speech and Language techniques for novel applications. * Research and implement novel ML and statistical approaches to add value to the business.
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center at AWS is a new strategic team that helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, data scientists, engineers, and solution architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists and architects to Research, design, develop, and evaluate cutting-edge generative AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for an Applied Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and science projects, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities We are looking for an Applied Scientist with domain expertise in Computer Vision or Recommendation Systems to lead development of new algorithms and E2E solutions. You will be part of a team of applied scientists and software development engineers responsible for research, design, development and deployment of algorithms into production pipelines. As a technologist, you will also drive publications of original work in top-tier conferences in Computer Vision and Machine Learning. You will be expected to deal with ambiguity! We're looking for someone with outstanding analytical abilities and someone comfortable working with cross-functional teams and systems. You must be a self-starter and be able to learn on the go. About the team In September 2018 Prime Video launched its first full-scale live streaming experience to world-wide Prime customers with NFL Thursday Night Football. That was just the start. Now Amazon has exclusive broadcasting rights to major leagues like NFL Thursday Night Football, Tennis major like Roland-Garros and English Premium League to list few and are broadcasting live events across 30+ sports world-wide. Prime Video is expanding not just the breadth of live content that it offers, but the depth of the experience. This is a transformative opportunity, the chance to be at the vanguard of a program that will revolutionize Prime Video, and the live streaming experience of customers everywhere.
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for a Senior Applied Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and science projects, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities We are looking for a Senior Applied Scientist with domain expertise in Computer Vision or Recommendation Systems to lead development of new algorithms and E2E solutions. You will be part of a team of applied scientists and software development engineers responsible for research, design, development and deployment of algorithms into production pipelines. As a technologist, you will also drive publications of original work in top-tier conferences in Computer Vision and Machine Learning. You will be expected to deal with ambiguity! We're looking for someone with outstanding analytical abilities and someone comfortable working with cross-functional teams and systems. You must be a self-starter and be able to learn on the go. About the team In September 2018 Prime Video launched its first full-scale live streaming experience to world-wide Prime customers with NFL Thursday Night Football. That was just the start. Now Amazon has exclusive broadcasting rights to major leagues like NFL Thursday Night Football, Tennis major like Roland-Garros and English Premium League to list few and are broadcasting live events across 30+ sports world-wide. Prime Video is expanding not just the breadth of live content that it offers, but the depth of the experience. This is a transformative opportunity, the chance to be at the vanguard of a program that will revolutionize Prime Video, and the live streaming experience of customers everywhere.
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for an Applied Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and science projects, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities We are looking for an Applied Scientist with domain expertise in Computer Vision or Recommendation Systems to lead development of new algorithms and E2E solutions. You will be part of a team of applied scientists and software development engineers responsible for research, design, development and deployment of algorithms into production pipelines. As a technologist, you will also drive publications of original work in top-tier conferences in Computer Vision and Machine Learning. You will be expected to deal with ambiguity! We're looking for someone with outstanding analytical abilities and someone comfortable working with cross-functional teams and systems. You must be a self-starter and be able to learn on the go. About the team In September 2018 Prime Video launched its first full-scale live streaming experience to world-wide Prime customers with NFL Thursday Night Football. That was just the start. Now Amazon has exclusive broadcasting rights to major leagues like NFL Thursday Night Football, Tennis major like Roland-Garros and English Premium League to list few and are broadcasting live events across 30+ sports world-wide. Prime Video is expanding not just the breadth of live content that it offers, but the depth of the experience. This is a transformative opportunity, the chance to be at the vanguard of a program that will revolutionize Prime Video, and the live streaming experience of customers everywhere.