How AWS uses graph neural networks to meet customer needs

Information extraction, drug discovery, and software analysis are just a few applications of this versatile tool.

Graphs are an information-rich way to represent data. A graph consists of nodes — typically represented by circles — and edges — typically represented as line segments between nodes. In a knowledge graph, for instance, the nodes represent entities, and the edges represent relationships between them. In a social graph, the nodes represent people, and an edge indicates that two of those people know each other.

At Amazon Web Services, the use of machine learning (ML) to make the information encoded in graphs more useful to our customers has been a major research focus. In this post, we’ll showcase a variety of graph ML applications that customers have developed in collaboration with AWS scientists, from malicious-account detection and automated document processing to knowledge-graph-assisted drug discovery and protein property prediction.

Introduction to graph learning

Graphs can be homogenous, meaning the nodes represent a single type of entity (say, airports), and the edges represent a single type of relationship (say, scheduled flights). Or they can be heterogeneous, meaning they integrate multiple types of relationships among different entities, such as a graph of customers and products connected by both purchase histories and interests, or a knowledge graph of drugs, diseases, genes, and biological pathways connected by relationships such as indication and regulation. Nodes are often associated with data features, such as a product’s price or text description.

Heterogeneous knowledge graph
In a heterogenous knowledge graph, nodes can represent different classes of objects.

Graph neural networks

In the past 10 years, deep learning has revolutionized a host of AI applications, from natural-language processing to speech synthesis to computer vision.

Graph neural networks (GNNs) extend the performance benefits of deep learning to graph data. Like other popular neural networks, a GNN model has a series of layers, which progress toward higher levels of abstraction.

For instance, the first layer of a GNN computes a representation — or embedding — of the data represented by each node in the graph, while the second layer computes a representation of each node based on the prior embedding and the embeddings of the node’s nearest neighbors. In this way, every layer expands the scope of a node’s embedding, from one-hop neighbors, to two-hop neighbors, and for some applications, even further.

Graph neural network
A demonstration of how graph neural networks use recursive embedding to condense all the information in a two-hop graph into a single vector. Relationships between entities — such as "produce" and "write" in a movie database (red and yellow arrows, respectively) — are encoded in the level-0 embeddings of the entities themselves (red and orange blocks).
Stacy Reilly

GNN tasks

The individual node embeddings can then be used for node-level tasks, such as predicting properties of a node. The embeddings can also be used for higher-level inferences. For instance, using representations across a pair of nodes or across all nodes from the graph, GNNs can perform link-level or graph-level tasks, respectively.

Related content
Amazon’s George Karypis will give a keynote address on graph neural networks, a field in which “there is some fundamental theoretical stuff that we still need to understand.”

In this section, we demonstrate the versatility of GNNs across all three levels of tasks and examine how our customers are using GNNs to tackle a variety of problems.

Node-level tasks

Using GNNs, we can infer the behavior of an individual node in the graph based on the relationships it has to other nodes. One common task is node classification, where the objective is to infer nodes’ missing labels by looking at their neighbors’ labels and features. This method is used in applications such as financial-fraud detection, publication categorization, and disease classification.

In AWS, we have successfully used Amazon Neptune and Deep Graph Library (DGL) to apply GNN node representation learning to customers’ fraud detection use cases. For a large e-commerce sports gadgets customer, for instance, scientists in the Amazon Machine Learning Solutions Lab successfully used GNN models implemented in DGL to detect malicious accounts among billions of registered accounts.

Fraud graph.png
An example of how a graph representation can be used to detect fraud.

These malicious accounts were created in large quantities to abuse usage of promotional codes and block general public access to the vendor’s best-selling items. Using data from e-commerce sites, we built a massive heterogenous graph in which the nodes represented accounts and other entities, such as products purchased, and the edges connected nodes based on usage histories. To identify malicious accounts, we trained a GNN model to propagate labels from accounts that were known to be malicious to unlabeled accounts.

With this method, we were able to detect 10 times as many malicious accounts as a previous rule-based detection method could. Such performance improvements could not be achieved by traditional methods for doing machine learning on tabular datasets, such as CatBoost, which take only account features as inputs, without considering the relationships between accounts captured by the graph.

Besides applications for inherently relational, graph-structured data, such as social-network and citation-network data, there have been extensions of GNNs for data normally presented in Euclidean space, such as images and texts. By transforming data in Euclidean space to graphs based on spatial proximity, GNNs can solve problems that are typically solved by convolutional neural networks (CNNs) and recurrent neural networks (RNNs), which were designed to handle visual data and sequential data.

Related content
New method enables two- to 14-fold speedups over best-performing predecessors.

For example, researchers have explored GNN models to improve the accuracy of information extraction, a task typically handled by RNNs. GNNs turn out to be better at incorporating the nonlocal and nonsequential relationships captured by graph representations of word dependencies.

In a recent collaboration, the Amazon Machine Learning Solutions Lab and United Airlines developed a customized GNN model (DocGCN) to improve the accuracy of automatic information extraction from self-uploaded passenger documents, including travel documents, COVID-19 test results, and vaccine cards. The team built a graph for each scanned travel document that connected textual units based on their spatial proximities and orientations in the document.

Then, the DocGCN model reasoned over the relationships among textual units (nodes of the graph) to improve the identification of relevant textual information. DocGCN also generalized to complex forms with different formats by leveraging graphs to capture relationships between texts in tables, key-value pairs, and paragraphs. This improvement expedited the automation of international travel readiness verification.

Link-level tasks

Another important learning task in graphs is link prediction, which is central to applications such as product or ad recommendation and friendship suggestion. Given two nodes and a relation, the goal is to determine whether the nodes are connected by the relation.

Typically, the prediction is provided by a decoder that consumes the embeddings of the source and destination nodes, as in the work on knowledge graph embedding at scale that members of our team presented at SIGIR 2020. The decoder is trained to correctly predict existing edges in the graph.

DRKG.png
The high-level structure of DRKG. Numerals indicate the number of different types of relationships between classes of entities; terms between parentheses are examples of those relationships.
Credit: Glynis Condon

An exciting opportunity area in this context is drug discovery. AWS has recently provided a drug-repurposing knowledge graph (DRKG) that employs link prediction to identify new targets for existing drugs. Built by scientists at AWS, DRKG is a comprehensive biological knowledge graph that relates human genes, chemical compounds, biological processes, drug side effects, diseases, and symptoms. By performing link prediction around COVID-19 in DRKG, researchers were able to identify 41 drugs that were potentially effective against COVID-19 — 11 of which were already in clinical trials.

AWS also publicly released this solution, built by leveraging DRKG, as the COVID-19 Knowledge Graph (CKG). CKG organizes and represents the information in the COVID-19 Open Research Dataset (CORD-19), enabling fast discovery and prioritization of drug candidates. It can also be employed to identify papers relevant to COVID-19, thereby reducing the scale of human effort required to study, summarize, and interpret findings relevant to the pandemic.

Graph-level tasks

Graph-level tasks involve the analysis of large collections of small and independent graphs. A chemical library of organic compounds is a common example of a graph-level application, where each organic compound is represented as a graph of atoms connected by chemical bonds. Graph-level analyses of chemical libraries are often vital for drug development and discovery use cases; applications include predicting organic compounds’ chemical properties and predicting biological activities such as binding affinity to protein targets.

Code graph.png
An example of a program dependence graph.

Another example of data that can benefit from graph-level representation is code snippets in programming languages. A piece of code can be represented by a program dependence graph (PDG), where variables, operators, and statements are nodes connected by their dependencies (links).

At PAKDD 2021, we presented a new method for using GNNs to represent code snippets. Recently, we have been using that method to identify similar code snippets, to find opportunities to make code more modular and easier to maintain.

GNNs can also be used to encode global properties of the underlying systems and incorporate them into graph embeddings, in a way that is difficult with other deep-learning methods. We recently worked with scientists from Janssen Biopharmaceuticals to predict the function of proteins from their 3-D structure, which is useful for research and development in the pharmaceutical and biotech industries.

A protein is composed of a sequence of amino acids folded in a particular way. We developed a graph representation of proteins in which each node was an amino acid, and the interactions between amino acids in the folded protein structure determined whether two nodes were linked or not.

Protein graphs.png
Examples of graph representations of proteins.

This allowed us to encode fine-grained biological information, including the distance, angle, and direction of contact between neighboring amino acid residues. When we combined a GNN trained on these graph representations with a model trained to parse billions of protein sequences, we improved performance on various protein function prediction tasks of real-world importance.

Graph-level tasks for GNNs have different data-engineering requirements than the previous tasks. Node-level and link-level tasks usually operate on a single giant graph, whereas graph-level tasks operate on a large number of independent small graphs.

To help customers scale GNNs up for graph-level tasks, we developed a cloud-based architecture that leverages the highly performant open-source GNN library DGL, the ML resource orchestration tool SageMaker, and Amazon DocumentDB for managing graph data.

Getting started on your GNN journey

Related content
Approach that uses a hierarchical graph neural network improves F-score by 49% relative to predecessors.

In this article, we presented a few examples of GNN applications at all three levels of graph-related tasks to showcase the value of GNNs to various enterprise and research problems. AWS provides several options for customers looking to build and deploy GNN-powered ML solutions. Customers looking to get started quickly can use Amazon Neptune ML to build GNN models directly on graph data stored in Amazon Neptune without writing any code. Amazon Neptune ML can train models to tackle node-level and link-level tasks like those described above. Customers looking to get more hands-on can implement GNN models using DGL on Amazon SageMaker. In the meantime, we will continue to advance the science of GNNs to build more products and solutions to make GNNs more accessible to all our customers.

Acknowledgments: Guang Yang, Soji Adeshina, Jasleen Grewal, Miguel Romero Calvo, Suchitra Sathyanarayana

Research areas

Related content

US, CA, Sunnyvale
At Amazon Fashion, we are obsessed with making Amazon Fashion the most loved fashion destinations globally. We're searching for Computer Vision pioneers who are passionate about technology, innovation, and customer experience, and who are enthusiastic about making a lasting impact on the industry. You'll be working with talented scientists, engineers, and product managers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey and change the world of eCommerce forever Key job responsibilities As a Applied Scientist, you will be at the forefront to define, own and drive the science that span multiple machine learning models and enabling multiple product/engineering teams and organizations. You will partner with product management and technical leadership to identify opportunities to innovate customer facing experiences. You will identify new areas of investment and work to align product roadmaps to deliver on these opportunities. As a science leader, you will not only develop unique scientific solutions, but more importantly influence strategy and outcomes across different Amazon organizations such as Search, Personalization and more. This role is inherently cross-functional and requires a strong ability to communicate, influence and earn the trust of software engineers, technical and business leadership. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
US, CA, Sunnyvale
Are you passionate about solving unique customer-facing problems in the Amazon scale? Are you excited about utilizing statistical analysis, machine learning, data mining and leverage tons of Amazon data to learn and infer customer shopping patterns? Do you enjoy working with a diversity of engineers, machine learning scientists, product managers and user-experience designers? If so, you have found the right match! Fashion is extremely fast-moving, visual, subjective, and it presents numerous unique problem domains such as product recommendations, product discovery and evaluation. The vision for Amazon Fashion is to make Amazon the number one online shopping destination for Fashion customers by providing large selections, inspiring and accurate recommendations and customer experience. The mission of Fit science team as part of Fashion Tech is to innovate and develop scalable ML solutions to provide personalized fit and size recommendation when Amazon Fashion customers evaluate apparels or shoes online. The team is hiring a Data Scientist who has a solid background in Statistical Analysis, Machine Learning and Data Mining and a proven record of effectively analyzing large complex heterogeneous datasets, and is motivated to grow professionally as a Data Scientist. Key job responsibilities - You will work on our Science team and partner closely with applied scientists, data engineers as well as product managers, UX designers, and business partners to answer complex problems via data analysis. Outputs from your analysis will directly help improve the performance of the ML based recommendation systems thereby enhancing the customer experience as well as inform the roadmap for science and the product. - You can effectively analyze complex and disparate datasets collected from diverse sources to derive key insights. - You have excellent communication skills to be able to work with cross-functional team members to understand key questions and earn the trust of senior leaders. - You are able to multi-task between different tasks such as gap analysis of algorithm results, integrating multiple disparate datasets, doing business intelligence, analyzing engagement metrics or presenting to stakeholders. - You thrive in an agile and fast-paced environment on highly visible projects and initiatives. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
GB, Cambridge
Our team undertakes research together with multiple organizations to advance the state-of-the-art in speech technologies. We not only work on giving Alexa, the ground-breaking service that powers Echo, her voice, but we also develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Senior Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language and Video technology. As a Senior Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech and vocal arts synthesis. Position Responsibilities: - Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. - Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. - Research and implement novel ML and statistical approaches to add value to the business. - Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR
US, WA, Seattle
The Amazon Economics Team is hiring Economist Interns. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets to solve real-world business problems. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with future job market placement. Roughly 85% of interns from previous cohorts have converted to full-time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, NY, New York
Amazon is investing heavily in building a world-class advertising business, and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. We deliver billions of ad impressions and millions of clicks daily and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. Our systems and algorithms operate on one of the world's largest product catalogs, matching shoppers with advertised products with a high relevance bar and strict latency constraints. Sponsored Products Detail Page Blended Widgets team is chartered with building novel product recommendation experiences. We push the innovation frontiers for our hundreds of millions of customers WW to aid product discovery while helping shoppers to find relevant products easily. Our team is building differentiated recommendations that highlight specific characteristics of products (either direct attributes, inferred or machine learned), and leveraging generative AI to provide interactive shopping experiences. We are looking for a Senior Applied Scientist who can delight our customers by continually learning and inventing. Our ideal candidate is an experienced Applied Scientist who has a track-record of performing deep analysis and is passionate about applying advanced ML and statistical techniques to solve real-world, ambiguous and complex challenges to optimize and improve the product performance, and who is motivated to achieve results in a fast-paced environment. The position offers an exceptional opportunity to grow your technical and non-technical skills and make a real difference to the Amazon Advertising business. As a Senior Applied Scientist on this team, you will: * Be the technical leader in Machine Learning; lead efforts within this team and collaborate across teams * Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, perform hands-on analysis and modeling of enormous data sets to develop insights that improve shopper experiences and merchandise sales * Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. * Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. * Research new and innovative machine learning approaches. * Promote the culture of experimentation and applied science at Amazon Team video https://youtu.be/zD_6Lzw8raE We are also open to consider the candidate in Seattle, or Palo Alto. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, VA, Arlington
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Search Sourcing and Relevance team parses billions of ads to surface the best ad to show to Amazon shoppers. The team strives to understand customer intent and identify relevant ads that enable them to discover new and alternate products. This also enables sellers on Amazon to showcase their products to customers, which may, at times, be buried deeper in the search results. By showing the right ads to customers at the right time, this team improves the shopper experience, increase advertiser ROI, and improves long-term monetization. This is a talented team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term growth. Key job responsibilities As a Senior Applied Scientist on this team, you will: - Be the technical leader in Machine Learning; lead efforts within this team and across other teams. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. About the team Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, WA, Seattle
Amazon Advertising Impact Team is looking for a Senior Economist to help translate cutting-edge causal inference and machine learning research into production solutions. The individual will have the opportunity to shape the technical and strategic vision of a highly ambiguous problem space, and deliver measurable business impacts via cross-team and cross-functional collaboration. Amazon is investing heavily in building a world class advertising business. Our advertising products are strategically important to Amazon’s Retail and Marketplace businesses for driving long-term growth. The mission of the Advertising Impact Team is to make our advertising products the most customer-centric in the world. We specialize in measuring and modeling the short- and long-term customer behavior in relation to advertising, using state of the art econometrics and machine learning techniques. With a broad mandate to experiment and innovate, we are constantly advancing our experimentation methodology and infrastructure to accelerate learning and scale impacts. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. Key job responsibilities • Function as a technical leader to shape the strategic vision and the science roadmap of a highly ambiguous problem space • Develop economic theory and deliver econometrics and machine learning models to optimize advertising strategies on behalf of our customers • Design, execute, and analyze experiments to verify the efficacy of different scientific solutions in production • Partner with cross-team technical contributors (scientists, software engineers, product managers) to implement the solution in production • Write effective business narratives and scientific papers to communicate to both business and technical audience, including the most senior leaders of the company We are open to hiring candidates to work out of one of the following locations: New York, NY, USA | Seattle, WA, USA
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use reduced-form causal analysis and/or structural economic modeling methods to evaluate the impact of policies on employee outcomes, and examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, VA, Arlington
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Search Relevance team parses billions of ads to surface the best ad to show to Amazon shoppers. The team strives to understand customer intent and identify relevant ads that enable them to discover new and alternate products. The team build advanced deep-learning models, large-scale machine-learning (ML) pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. This also enables sellers on Amazon to showcase their products to customers, which may, at times, be buried deeper in the search results. By showing the right ads to customers at the right time, this team improves the shopper experience, increase advertiser ROI, and improves long-term monetization. This is a talented team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term growth. We are looking for an Applied Scientist, with a background in Machine Learning to optimize serving ads on billions of product pages. The solutions you create would ensure relevant and useful ads are served to Amazon's customers. You will directly impact our customers’ shopping experience while helping our sellers get the maximum ROI from advertising on Amazon. You will be expected to demonstrate strong ownership and should be curious to learn and leverage the rich textual, image, and other contextual signals. This role will challenge you to utilize cutting-edge machine learning techniques in the domain of predictive modeling, natural language processing (NLP) and Transformer, deep learning, reinforcement learning, query understanding, and image recognition to deliver significant impact for the business. Ideal candidates will be able to work cross functionally across multiple stakeholders, synthesize the science needs of our business partners, develop models to solve business needs, and implement solutions in production. In addition to being a strongly motivated IC, you will also be responsible for mentoring junior scientists and guiding them to deliver high impacting products and services for Amazon customers and sellers. Key job responsibilities As a Senior Applied Scientist on this team, you will: • Be the technical leader in Machine Learning; lead efforts within this team and across other teams. • Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. • Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. • Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. • Run A/B experiments, gather data, and perform statistical analysis. • Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. • Research new and innovative machine learning approaches. • Conduct experiment with LLM training and finetuning, prompt engineering • Recruit Applied Scientists to the team and provide mentorship. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, WA, Seattle
Interested in using the latest, cutting edge machine learning and science to improve the Amazon employee experience? This role provides applied science leadership to the organization that develops and delivers data-driven insights, personalization, and nudges into Amazon's suite of talent management products to help managers, employees, and organizational leaders make better decisions and have better, more equitable outcomes. Key job responsibilities As the Principal Applied Scientist for GTMC SIERRA, you will be responsible for providing scientific thought leadership over multiple applied science and engineering teams. Each of these teams has rapidly evolving and complex demands to define, develop, and deliver scalable products that make work easier, more efficient, and more rewarding for Amazonians. These are some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves. You will also play a critical role in the organization's business planning, work closely with senior executives to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop engineering and science talent. You will provide science thought leadership and support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing market. About the team Global Talent Management & Compensation (GTMC) SIERRA (Science, Insights, Experience, Research, Reporting & Analytics) is a horizontal, multi-disciplinary organization whose mission is to be a force multiplier for the broader GTMC organization and our key customer cohorts. We accomplish this by using our expertise in data analytics and science, economics, machine learning (ML), UX, I/O psychology, and engineering to build insights and experiences that raise the bar in understanding and shaping decision making at scale by integrating within and across talent journeys as well as through self-service tools and closed loop mechanisms outside of those journeys. Our portfolio of products spans foundational data sources, metrics, and research through to finished features and products that our end-customers interact with on a daily basis. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA