Amazon at WSDM: The future of graph neural networks

Amazon’s George Karypis will give a keynote address on graph neural networks, a field in which “there is some fundamental theoretical stuff that we still need to understand.”

George Karypis, a senior principal scientist at Amazon Web Services, is one of the keynote speakers at this year’s Conference on Web Search and Data Mining (WSDM), and his topic will be graph neural networks, his chief area of research at Amazon.

george-karypis.png
George Karypis, a senior principal scientist at Amazon Web Services.

“A lot of the WSDM crowd are looking at relations between entities, especially if you think in terms of the web and social networks,” Karypis says. “If I'm going to develop deep-learning techniques to compute a representation of a graph, then a graph neural network is the right formalism to do that.”

A graph consists of nodes, often depicted as circles, and edges, often depicted as line segments connecting nodes. Graphs are infinitely expressive: the nodes might represent atoms in a molecule and the edges the bonds between them; or, as in a knowledge graph, the nodes could represent entities and the edges relationships between them; or, as in a recommendation engine, the nodes could represent both customers and products, and edges could indicate both similarity between products and which customers have bought which products.

Graph neural networks (GNNs) represent information contained in graphs as vectors, so other machine learning models can make use of that information.

“In the standard machine learning workflow nowadays, we compute a representation of a piece of text,” Karypis says. “I then use that representation as input to a downstream model. I either do an end-to-end fine tuning of my language model or just use it the way it is, as a kind of a static representation.

“We do exactly the same thing for graphs using graph neural networks. For example, in many drug discovery use cases, I can pretrain a graph neural network so that it learns how to compute a representation of small molecules. Then I can take that representation as input to another model that predicts various physicochemical properties of the molecules.”

Related content
The International Conference for High Performance Computing, Networking, Storage and Analysis recognizes paper that has ‘deeply influenced the HPC discipline’.

In addition to providing inputs to downstream models, GNNs can also be used to predict properties of the graphs themselves — deducing missing edges, for instance.

“In that case, you still compute representations of the two nodes that potentially are connected, and then you learn a model that answers the question, ‘Given the representations, are these nodes connected?’” Karypis says. “So you do pretty much the same thing there as well.”

Scope of representation

Graphs are so useful because their structure encodes information beyond the information encoded in individual nodes — the characteristics of particular atoms, products, or customers, for instance. One outstanding research question in the field is how much of that structural information a GNN representation can capture.

Computing node representations is an iterative process. The first step is to compute a representation of each node. The next step is to update each node’s representation, taking into account both its previous representation and the representations of its immediate neighbors. Every repetition of this process extends the scope of the representation by one hop.

Graph neural network
A demonstration of the iterative process a graph neural network might use to condense the information in a two-hop graph into a single vector. Relationships between entities — such as "produce" and "write" in a movie database (red and yellow arrows, respectively) — are encoded in the initial representations (level-0 embeddings) of the entities themselves (red and orange blocks). Animation from the blog post "Combining knowledge graphs, quickly and accurately".
Stacy Reilly

“The problem is that if you keep on doing that, then pretty much every node will end up becoming the same,” Karypis says. “On GNNs we call that oversmoothing. For some networks, like those coming from natural graphs, this often happens after a very small number of steps. Think of social networks and the Kevin Bacon game. It does not take many hops before you hit a large fraction of the nodes.

“In the past year or two, there has been a lot of research work in terms of people trying to see how I can still get information from faraway neighbors but not get to the point that every node becomes pretty much the same because I have oversmoothed all the information?”

Questions of translation

Another outstanding research question, Karypis says, is how to represent data in graph form in the first place, because this has a significant effect on GNN performance.

Related content
University of Minnesota professor and Amazon Scholar, together with coauthor, receives recognition for paper that proposes novel approach to algorithm that generates high-quality recommendations for e-commerce products at high speeds.

“There are certain application domains where we've been very successful in developing accurate GNN-based models,” Karypis says. “For example, for domains in which the underlying data is already a graph, such as small and large molecules or knowledge graphs, we have very good GNN models.

“For domains for which there are multiple ways to model the underlying data via a graph, it often takes a lot of trial and error to develop successful GNN-based approaches because we need to consider the interplay between graph and GNN models.

GNN models that can tolerate variations in how the underlying data is modeled will go a long way toward reducing the effort required to develop successful GNN-based approaches.
George Karypis

“If I look at a relational database, let's say I have information about you, like your address. I can choose to create a table for the street name, a table for the zip code, and a table for the city. Then I can create a table for the address. Its rows will have a foreign key to the zip code table, a foreign key to the street name, and a foreign key to the city table. Then, in the table that stores information about you, I can have a foreign key to that address table.

“Alternatively, I can choose to create three different columns in the main table, with street number, city, and zip code. Now If I'm going to view those things as a graph, in one case, everything will be pretty much directly connected. If I have a node for a particular row, that node will be connected to another node that has the street number and street name and so forth. As opposed to the other case, where I'm going to have a pointer to another table that will have the pointers to the other three tables that contain information about the other stuff.

Related content
Graph-based models capture correlations efficiently enough to enable machine learning at scale.

“All of a sudden, something will go from being one hop away to potentially being three hops away or even more. That creates a very different topology when I'm trying to aggregate information within the context of a GNN. Developing GNN models that can tolerate variations on how the underlying data is modeled will go a long way toward reducing the effort required to develop successful GNN-based approaches.

“GNNs are one of the hottest areas of deep-learning research and are being used in an ever-growing set of domains and applications. I think that in the field of GNN research, there are many things that we still do not know. It's a field that is very much in the early days.”

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation with single and dual arm manipulation - Leverage simulation and real-world data collection to create large datasets for model development - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for dexterous manipulation
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities As an Applied Science, you will have access to large datasets with billions of images and video to build large-scale machine learning systems. Additionally, you will analyze and model terabytes of text, images, and other types of data to solve real-world problems and translate business and functional requirements into quick prototypes or proofs of concept. We are looking for smart scientists capable of using a variety of domain expertise combined with machine learning and statistical techniques to invent, design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. About the team Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
TW, TPE, Hsinchu City
Are you passionate about robotics and research? Do you want to solve real customer problems through innovative technology? Do you enjoy working on scalable research and projects in a collaborative team environment? Do you want to see your science solutions directly impact millions of customers worldwide? At Amazon, we hire the best minds in technology to innovate and build on behalf of our customers. Customer obsession is part of our company DNA, which has made us one of the world's most beloved brands. We’re looking for current PhD or Master students with a passion for robotic research and applications to join us as Robotics Applied Scientist II Intern/Co-ops in 2026 to shape the future of robotics and automation at an unprecedented scale across. For these positions, our Robotics teams at Amazon are looking for students with a specialization in one or more of the research areas in robotics such as: robotics, robotics manipulation (e.g., robot arm, grasping, dexterous manipulation, end of arm tools/end effector), autonomous mobile robots, mobile manipulation, movement, autonomous navigation, locomotion, motion/path planning, controls, perception, sensing, robot learning, artificial intelligence, machine learning, computer vision, large language models, human-robot interaction, robotics simulation, optimization, and more! We're looking for curious minds who think big and want to define tomorrow's technology. At Amazon, you'll grow into the high-impact engineer you know you can be, supported by a culture of learning and mentorship. Every day brings exciting new challenges and opportunities for personal growth. By applying to this role, you will be considered for Robotics Applied Scientist II Intern/Co-op (2026) opportunities across various Robotics teams at Amazon with different robotics research focus, with internship positions available for multiple locations, durations (3 to 6+ months), and year-round start dates (winter, spring, summer, fall). Amazon intern and co-op roles follow the same internship structure. "Intern/Internship" wording refers to both interns and co-ops. Amazon internships across all seasons are full-time positions during vacation, and interns should expect to work in office, Monday-Friday, up to 40 hours per week typically between 9am-6pm. Specific team norms around working hours will be communicated by your manager. Interns should not have other employment during the Amazon work-day. Applicants should have a minimum of one quarter/semester/trimester remaining in their studies after their internship concludes. The robotics internship join dates, length, location, and prospective team will be finalized at the time of any applicable job offers. In your application, you will be able to provide your preference of research interests, start dates, internship duration, and location. While your preference will be taken into consideration, we cannot guarantee that we can meet your selection based on several factors including but not limited to the internship availability and business needs of this role.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Prime Air is seeking an experienced Applied Science Manager to help develop our advanced Navigation algorithms and flight software applications. In this role, you will lead a team of scientists and engineers to conduct analyses, support cross-functional decision-making, define system architectures and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. This person must be comfortable working with a team of top-notch software developers and collaborating with our science teams. We’re looking for someone who innovates, and loves solving hard problems. You will work hard, have fun, and make history! Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.
US, VA, Herndon
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As an Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences and inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, VA, Arlington
The Benefits Science team drives evidence-based decision-making across BXT (Benefits, eXperience & Technology) through causal evaluation, structural modeling, conjoint experiments, and the creation of tools that scale our analytic capabilities. We transform complex data into actionable insights that enhance the employee experience and advance innovative benefits design. We are looking for an economist who is able to work with business partners to hone complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will collaborate with business partners to design and evaluate pilots, estimate models on large scale data, develop and deploy conjoint surveys, and transform successful prototypes into improved policies and programs at scale. This job requires analysis of complex health claims data. Economists with experience working with claims data and an understanding of the structure of the health care industry are strongly encouraged to apply. Key job responsibilities - Design and conduct rigorous evaluations of benefits programs - Support the development and application of structural models - Develop experiments to evaluate the impact of benefits initiatives - Communicate complex findings to business stakeholders in clear, actionable terms - Work with engineering teams to develop scalable tools that automate and streamline evaluation processes A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions.
US, WA, Seattle
Are you fascinated by the power of Large Language Models (LLM) and applying Generative AI to solve complex challenges within one of Amazon's most significant businesses? Amazon Selection and Catalog Systems (ASCS) builds the systems that host and run the world's largest e-Commerce products catalog, it powers the online buying experience for customers worldwide so they can find, discover and buy anything they want. Amazon's customers rely on the completeness, consistency and correctness of Amazon's product data to make well-informed purchase decisions. We develop LLM applications that make Catalog the best-in-class source of product information for all products worldwide. This problem is challenging due to sheer scale (billions of products in the catalog), diversity (products ranging from electronics to groceries) and multitude of input sources (millions of sellers contributing product data with different quality). We are seeking a passionate, talented, and inventive individual to join the Catalog AI team and help build industry-leading technologies that customers will love. You will apply machine learning and large language model techniques, such as fine-tuning, reinforcement learning, and prompt optimization, to solve real customer problems. You will work closely with scientists and engineers to experiment with new methods, run large-scale evaluations, and bring research ideas into production. Key job responsibilities * Design and implement LLM-based solutions to improve catalog data quality and completeness * Conduct experiments and A/B tests to validate model improvements and measure business impact * Optimize large language models for quality and cost on catalog-specific tasks * Collaborate with engineering teams to deploy models at scale serving billions of products
US, TX, Austin
Our team is involved with pre-silicon design verification for custom IP. A critical requirement of the verification flow is the requirement of legal and realistic stimulus of a custom Machine Learning Accelerator Chip. Content creation is built using formal methods that model legal behavior of the design and then solving the problem to create the specific assembly tests. The entire frame work for creating these custom tests is developed using a SMT solver and custom software code to guide the solution space into templated scenarios. This highly visible and innovative role requires the design of this solving framework and collaborating with design verification engineers, hardware architects and designers to ensure that interesting content can be created for the projects needs. Key job responsibilities Develop an understanding for a custom machine learning instruction set architecture. Model correctness of instruction streams using first order logic. Create custom API's to allow control over scheduling and randomness. Deploy algorithms to ensure concurrent code is safely constructed. Create coverage metrics to ensure solution space coverage. Use novel methods like machine learning to automate content creation. About the team Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for customers who require specialized security solutions for their cloud services. Annapurna Labs (our organization within AWS UC) designs silicon and software that accelerates innovation. Customers choose us to create cloud solutions that solve challenges that were unimaginable a short time ago—even yesterday. Our custom chips, accelerators, and software stacks enable us to take on technical challenges that have never been seen before, and deliver results that help our customers change the world. About AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
IN, KA, Bengaluru
Interested to build the next generation Financial systems that can handle billions of dollars in transactions? Interested to build highly scalable next generation systems that could utilize Amazon Cloud? Massive data volume + complex business rules in a highly distributed and service oriented architecture, a world class information collection and delivery challenge. Our challenge is to deliver the software systems which accurately capture, process, and report on the huge volume of financial transactions that are generated each day as millions of customers make purchases, as thousands of Vendors and Partners are paid, as inventory moves in and out of warehouses, as commissions are calculated, and as taxes are collected in hundreds of jurisdictions worldwide. Key job responsibilities • Understand the business and discover actionable insights from large volumes of data through application of machine learning, statistics or causal inference. • Analyse and extract relevant information from large amounts of Amazon’s historical transactions data to help automate and optimize key processes • Research, develop and implement novel machine learning and statistical approaches for anomaly, theft, fraud, abusive and wasteful transactions detection. • Use machine learning and analytical techniques to create scalable solutions for business problems. • Identify new areas where machine learning can be applied for solving business problems. • Partner with developers and business teams to put your models in production. • Mentor other scientists and engineers in the use of ML techniques. A day in the life • Understand the business and discover actionable insights from large volumes of data through application of machine learning, statistics or causal inference. • Analyse and extract relevant information from large amounts of Amazon’s historical transactions data to help automate and optimize key processes • Research, develop and implement novel machine learning and statistical approaches for anomaly, theft, fraud, abusive and wasteful transactions detection. • Use machine learning and analytical techniques to create scalable solutions for business problems. • Identify new areas where machine learning can be applied for solving business problems. • Partner with developers and business teams to put your models in production. • Mentor other scientists and engineers in the use of ML techniques. About the team The FinAuto TFAW(theft, fraud, abuse, waste) team is part of FGBS Org and focuses on building applications utilizing machine learning models to identify and prevent theft, fraud, abusive and wasteful(TFAW) financial transactions across Amazon. Our mission is to prevent every single TFAW transaction. As a Machine Learning Scientist in the team, you will be driving the TFAW Sciences roadmap, conduct research to develop state-of-the-art solutions through a combination of data mining, statistical and machine learning techniques, and coordinate with Engineering team to put these models into production. You will need to collaborate effectively with internal stakeholders, cross-functional teams to solve problems, create operational efficiencies, and deliver successfully against high organizational standards.
US, WA, Seattle
The Sponsored Products and Brands (SPB) team at Amazon Ads is transforming advertising through generative AI technologies. We help millions of customers discover products and engage with brands across Amazon.com and beyond. Our team combines human creativity with artificial intelligence to reinvent the entire advertising lifecycle—from ad creation and optimization to performance analysis and customer insights. We develop responsible AI technologies that balance advertiser needs, enhance shopping experiences, and strengthen the marketplace. Our team values innovation and tackles complex challenges that push the boundaries of what's possible with AI. Join us in shaping the future of advertising. Key job responsibilities This role will redesign how ads create personalized, relevant shopping experiences with customer value at the forefront. Key responsibilities include: - Design and develop solutions using GenAI, deep learning, multi-objective optimization and/or reinforcement learning to transform ad retrieval, auctions, whole-page relevance, and shopping experiences. - Partner with scientists, engineers, and product managers to build scalable, production-ready science solutions. - Apply industry advances in GenAI, Large Language Models (LLMs), and related fields to create innovative prototypes and concepts. - Improve the team's scientific and technical capabilities by implementing algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor junior scientists and engineers to build a high-performing, collaborative team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value.