Amazon at WSDM: The future of graph neural networks

Amazon’s George Karypis will give a keynote address on graph neural networks, a field in which “there is some fundamental theoretical stuff that we still need to understand.”

George Karypis, a senior principal scientist at Amazon Web Services, is one of the keynote speakers at this year’s Conference on Web Search and Data Mining (WSDM), and his topic will be graph neural networks, his chief area of research at Amazon.

george-karypis.png
George Karypis, a senior principal scientist at Amazon Web Services.

“A lot of the WSDM crowd are looking at relations between entities, especially if you think in terms of the web and social networks,” Karypis says. “If I'm going to develop deep-learning techniques to compute a representation of a graph, then a graph neural network is the right formalism to do that.”

A graph consists of nodes, often depicted as circles, and edges, often depicted as line segments connecting nodes. Graphs are infinitely expressive: the nodes might represent atoms in a molecule and the edges the bonds between them; or, as in a knowledge graph, the nodes could represent entities and the edges relationships between them; or, as in a recommendation engine, the nodes could represent both customers and products, and edges could indicate both similarity between products and which customers have bought which products.

Graph neural networks (GNNs) represent information contained in graphs as vectors, so other machine learning models can make use of that information.

“In the standard machine learning workflow nowadays, we compute a representation of a piece of text,” Karypis says. “I then use that representation as input to a downstream model. I either do an end-to-end fine tuning of my language model or just use it the way it is, as a kind of a static representation.

“We do exactly the same thing for graphs using graph neural networks. For example, in many drug discovery use cases, I can pretrain a graph neural network so that it learns how to compute a representation of small molecules. Then I can take that representation as input to another model that predicts various physicochemical properties of the molecules.”

Related content
The International Conference for High Performance Computing, Networking, Storage and Analysis recognizes paper that has ‘deeply influenced the HPC discipline’.

In addition to providing inputs to downstream models, GNNs can also be used to predict properties of the graphs themselves — deducing missing edges, for instance.

“In that case, you still compute representations of the two nodes that potentially are connected, and then you learn a model that answers the question, ‘Given the representations, are these nodes connected?’” Karypis says. “So you do pretty much the same thing there as well.”

Scope of representation

Graphs are so useful because their structure encodes information beyond the information encoded in individual nodes — the characteristics of particular atoms, products, or customers, for instance. One outstanding research question in the field is how much of that structural information a GNN representation can capture.

Computing node representations is an iterative process. The first step is to compute a representation of each node. The next step is to update each node’s representation, taking into account both its previous representation and the representations of its immediate neighbors. Every repetition of this process extends the scope of the representation by one hop.

Graph neural network
A demonstration of the iterative process a graph neural network might use to condense the information in a two-hop graph into a single vector. Relationships between entities — such as "produce" and "write" in a movie database (red and yellow arrows, respectively) — are encoded in the initial representations (level-0 embeddings) of the entities themselves (red and orange blocks). Animation from the blog post "Combining knowledge graphs, quickly and accurately".
Stacy Reilly

“The problem is that if you keep on doing that, then pretty much every node will end up becoming the same,” Karypis says. “On GNNs we call that oversmoothing. For some networks, like those coming from natural graphs, this often happens after a very small number of steps. Think of social networks and the Kevin Bacon game. It does not take many hops before you hit a large fraction of the nodes.

“In the past year or two, there has been a lot of research work in terms of people trying to see how I can still get information from faraway neighbors but not get to the point that every node becomes pretty much the same because I have oversmoothed all the information?”

Questions of translation

Another outstanding research question, Karypis says, is how to represent data in graph form in the first place, because this has a significant effect on GNN performance.

Related content
University of Minnesota professor and Amazon Scholar, together with coauthor, receives recognition for paper that proposes novel approach to algorithm that generates high-quality recommendations for e-commerce products at high speeds.

“There are certain application domains where we've been very successful in developing accurate GNN-based models,” Karypis says. “For example, for domains in which the underlying data is already a graph, such as small and large molecules or knowledge graphs, we have very good GNN models.

“For domains for which there are multiple ways to model the underlying data via a graph, it often takes a lot of trial and error to develop successful GNN-based approaches because we need to consider the interplay between graph and GNN models.

GNN models that can tolerate variations in how the underlying data is modeled will go a long way toward reducing the effort required to develop successful GNN-based approaches.
George Karypis

“If I look at a relational database, let's say I have information about you, like your address. I can choose to create a table for the street name, a table for the zip code, and a table for the city. Then I can create a table for the address. Its rows will have a foreign key to the zip code table, a foreign key to the street name, and a foreign key to the city table. Then, in the table that stores information about you, I can have a foreign key to that address table.

“Alternatively, I can choose to create three different columns in the main table, with street number, city, and zip code. Now If I'm going to view those things as a graph, in one case, everything will be pretty much directly connected. If I have a node for a particular row, that node will be connected to another node that has the street number and street name and so forth. As opposed to the other case, where I'm going to have a pointer to another table that will have the pointers to the other three tables that contain information about the other stuff.

Related content
Graph-based models capture correlations efficiently enough to enable machine learning at scale.

“All of a sudden, something will go from being one hop away to potentially being three hops away or even more. That creates a very different topology when I'm trying to aggregate information within the context of a GNN. Developing GNN models that can tolerate variations on how the underlying data is modeled will go a long way toward reducing the effort required to develop successful GNN-based approaches.

“GNNs are one of the hottest areas of deep-learning research and are being used in an ever-growing set of domains and applications. I think that in the field of GNN research, there are many things that we still do not know. It's a field that is very much in the early days.”

Related content

US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking interns and co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, and planning/scheduling. You will be challenged intellectually and have a good time while you are at it! Key job responsibilities • Identifying creative solutions for challenging research problems in robotics and computer vision • Developing software solutions to test hypotheses and demonstrate new functionality • Prototyping concepts to collect data and measure performance • Writing code and unit tests and integrating code with other software and hardware components • Utilizing Amazon Robotics and Amazon engineering tools, processes and technologies • Delivering a final presentation to managers and engineers on the successes and challenges of their internship and the business value they have contributed
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking interns and co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, and planning/scheduling. You will be challenged intellectually and have a good time while you are at it! Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, artificial intelligence, human-robot interaction, optimization and more.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We’re seeking a Principal Scientist with a deep expertise in Search Science. Your responsibilities will include everything from developing and prototyping innovative machine learning, and deep learning algorithms to implementing, testing, and supporting full solutions in a production environment. We are looking for innovators who can contribute to advancing search technology on what’s scientifically possible while remaining committed to creating world-class products. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), Earth's most customer-centric company one of the world's leading internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Key job responsibilities As a hands-on leader of this team, you’ll be responsible for defining key research questions, identifying relevant data, adopting or proposing innovative machine learning solutions conducting rigorous experiments, publishing results and working with the engineering team to deploy these solutions. As a strategic leader, you will identify investment opportunities, develop long term strategies, and propose, prioritize and deliver on goals. You’ll also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team Starting in 2009, the Visual Search & Augmented Reality team has thus far launched many visual search solutions on the Amazon App that use computer vision and machine learning/deep learning to help customers complete their shopping missions more easily; multiple internal teams at Amazon (devices, Kindle, Seller services, etc.) also use our libraries and APIs to deliver solutions to their own customers. We are a full stack shop, and our team capabilities cover the whole solution spectrum, ranging across applied science, large scale engineering services, product management, UX design, and mobile app development for iOS and Android.
US, MN, Minneapolis
AWS Central Economics is an interdisciplinary team on the cutting edge of economics, statistical analysis, and machine learning whose mission is to solve problems that have high risk with abnormally high returns. Our team leverages the strengths of our scientists to build solutions for some of the toughest business problems here at Amazon AWS. We are looking for an exceptionally talented, seasoned, and motivated Economist to manage a team of economists and data scientists to drive the science for AWS. Key job responsibilities Manage a team of economists and data scientists to deliver actionable economic analyses to business leaders, provide leadership on the economics and science used in the analyses, and engage with business leaders to identify challenges AWS faces that call for in-depth economic analyses and to ensure the analyses have their intended impact.
LU, Luxembourg
&ltHire Relocation Requisition - not for posting> Provides insights to leadership on improving Supply Chain cost and Speed by using Data Science and Analytics techniques. Build Dashboards and models to industrialize these findings at scale.
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to work with business partners to hone complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
Amazon is looking for talented Postdoctoral Scientists to join our global Science teams for a one-year, full-time research position. Postdoctoral Scientists will innovate as members of Amazon’s key global Science teams, including: AWS, Alexa AI, Alexa Shopping, Amazon Style, CoreAI, Last Mile, and Supply Chain Optimization Technologies. Postdoctoral Scientists will join one of may central, global science teams focused on solving research-intense business problems by leveraging Machine Learning, Econometrics, Statistics, and Data Science. Postdoctoral Scientists will work at the intersection of ML and systems to solve practical data driven optimization problems at Amazon scale. Postdocs will raise the scientific bar across Amazon by diving deep into exploratory areas of research to enhance the customer experience and improve efficiencies. Please note: This posting is one of several Amazon Postdoctoral Scientist postings. Please only apply to a maximum of 2 Amazon Postdoctoral Scientist postings that are relevant to your technical field and subject matter expertise. Key job responsibilities * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s vibrant and diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent cutting-edge techniques in your area(s) of expertise.