Customer-obsessed science
Research areas
-
November 20, 20254 min readA new evaluation pipeline called FiSCo uncovers hidden biases and offers an assessment framework that evolves alongside language models.
-
-
-
September 2, 20253 min read
-
Featured news
-
EMNLP 20232023Continual Federated Learning (CFL) combines Federated Learning (FL), the decentralized learning of a central model on a number of client devices that may not communicate their data, and Continual Learning (CL), the learning of a model from a continual stream of data without keeping the entire history. In CL, the main challenge is forgetting what was learned from past data. While replay-based algorithms
-
ACM 2023 Symposium on Operating Systems Principles (SOSP)2023Large deep learning models have recently garnered substantial attention from both academia and industry. Nonetheless, frequent failures are observed during large model training due to large-scale resources involved and extended training time. Existing solutions have significant failure recovery costs due to the severe restriction imposed by the bandwidth of remote storage in which they store checkpoints
-
EMNLP 20232023Large language models (LLMs) encode vast amounts of world knowledge. However, since these models are trained on large swaths of internet data, they are at risk of inordinately capturing information about dominant groups. This imbalance can propagate into generated language. In this work, we study and operationalise a form of geographical erasure, wherein language models underpredict certain countries. We
-
EMNLP 20232023Modern ML systems ingest data aggregated from diverse sources, such as synthetic, human-annotated, and live customer traffic. Understanding which examples are important to the performance of a learning algorithm is crucial for efficient model training. Recently, a growing body of literature has given rise to various “influence scores,” which use training artifacts such as model confidence or checkpointed
-
ACMMM 20232023Socially intelligent systems such as home robots should be able to perceive emotions and social behaviors. Affect recognition datasets have limited labeled data, and existing large unlabeled datasets, e.g., VoxCeleb2, suitable for pre-training, mostly contain neutral expressions, limiting their application to affective downstream tasks. We introduce a novel Semi-supervised Affective Adaptation framework
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all