More-efficient recovery from failures during large-ML-model training

Novel “checkpointing” scheme that uses CPU memory reduces the time wasted on failure recovery by more than 92%.

Today’s large machine learning models — such as generative language models or vision-language models — are so big that the process of training them is typically divided up across thousands or even tens of thousands of GPUs. Even with all that parallelism, training still frequently takes months.

With such a massive deployment of resources, hardware and software failures are common, often occurring multiple times a day. To reduce wasted work when resources fail, the large-model training procedure involves checkpointing, or regularly copying the model states to storage servers on the network. That way, if a resource fails, its most recent checkpoint can be retrieved and either reloaded or copied to a new machine, and training can continue.

Related content
Contiguous parameter management and prefetched activation offloading expand the MiCS tool kit.

Because the models are so large, checkpointing to remote storage can take a while — maybe 30 or 40 minutes. So it’s done sparingly, usually around every three hours. If a resource fails, and the training has to back up to the last checkpoint, it could mean the loss of several hours’ work. And on top of that, it can take 10 to 20 minutes just to retrieve checkpoints from storage. If failures happen several times a day, they can seriously slow down training.

In a paper my colleagues and I are presenting at this year’s Symposium on Operating System Principles (SOSP), we describe a checkpointing procedure that, instead of relying on remote storage, stores checkpoints in the CPU memory of the machines involved in model training. This makes both checkpointing and retrieval much more efficient, to the point that we can checkpoint after every training step, so that failures don’t set training back as far. In our experiments, this approach reduces the training time lost to hardware or software failures by about 92%.

In our paper, we explain how we address two major challenges to our approach: optimal checkpoint placement on machines and optimal traffic scheduling to accommodate both checkpointing and training.

GPU training

A typical GPU machine includes CPUs for general processing tasks — including allocating work to the GPUs — and eight or so GPUs, which have a special-purpose architecture optimized for massively parallel tasks such as model training. Each GPU has its own memory, but the CPU memory is much larger.

Related content
In tests, new approach is 15 to 18 times as fast as predecessors.

Training a large machine learning (ML) model — or foundation model — requires clusters of thousands of such GPU machines. Communication between machines in a cluster is much higher bandwidth than communication with remote storage servers, which is one of the reasons that CPU checkpointing is so efficient.

Optimal checkpoint placement

In our approach, which we call Gemini, each machine checkpoints to an onboard “RAM drive” — that is, a dedicated portion of its own CPU memory. This is sufficient for recovery from software failures, which typically don’t compromise the content of RAM drives. To recover from hardware failures, each machine also checkpoints to the CPU memory of at least one other machine in the cluster.

The person training the model can specify how many copies of each checkpoint should be stored on the network. Typically, that number will be two or three, but let’s call it M. Gemini divides the training cluster into groups of M machines each, and each machine checkpoints to the CPU memories of the other machines in its group.

In our paper, we prove that if the number of machines is evenly divisible by M, this checkpoint placement is optimal. If the number of machines is not evenly divisible by M, we create as many M-machine groups as possible without creating a one-machine group (which can result in one group with M + 1 machines).

Checkpointing placement.png
A sampling of checkpoint placement strategies. When the number of machines on the network is evenly divisible by the number of replicas of each checkpoint, our mixed-placement strategy reduces to the group strategy, which is provably optimal.

Gemini stores checkpoints for failure recovery in CPU memory, while storing checkpoints for other purposes, such as transfer learning and model debugging, in remote storage. This procedure is tiered, so that if the checkpoint is not in local CPU memory, Gemini attempts to retrieve it from the CPU memory of adjacent machines; if it is still unavailable, Gemini looks for it in remote storage.

Interleaved communication

During large-model training, GPUs will share model weights for computation. Checkpointing to CPU memory uses the same communication network that training traffic does. We need to make sure that the two uses don’t get in each other’s way.

Our approach includes a system profiler that learns the lengths of the idle time spans between training traffic and schedules checkpoint traffic for those time spans.

Gemini-interleaving scheme.png
A comparison of the existing communication scheme for large-model training (a), a naïve “blocking” approach to CPU checkpointing (b), and Gemini’s interleaving scheme (c).

This approach poses some difficulties, though. A GPU receiving part of a checkpoint transmission must store it locally before copying it to CPU memory, but GPU memory is limited. We allocate a small amount of each GPU’s memory to checkpointing and send checkpoints in small enough chunks that they won’t overflow those allocations.

Related content
In tests, a new way to allocate virtual machines across servers outperforms baselines by 10%.

That means, however, that before the GPU can receive the next checkpoint transmission, it needs to free up its memory allocation by copying the contents to CPU memory. If we wait for that copying to complete before sending another checkpoint transmission, we waste valuable time.

So we further subdivide each GPU memory allocation into two halves and pipeline the transfer of data to CPU memory, constantly refilling one half of the allocation while emptying the other. This optimizes our use of the precious idle time between bursts of training traffic for checkpoint traffic.

Gamini overview.jpeg
To avoid overflowing GPU memory (b), Gemini transmits checkpoints in chunks sized to a buffer of reserved GPU memory. To avoid wasted time while the contents of the buffer are copied to CPU memory (c), both the checkpoint chunks and the GPU buffers are split in half to enable pipelining (d).

To evaluate Gemini, we used it for checkpointing during the training of three popular large language models, and as baselines, we trained the same models using two prior checkpointing procedures. In our evaluation, Gemini could checkpoint model states for every iteration, and as a consequence, it reduced the training time lost because of hardware or software failures by more than 92% relative to the best-performing baseline.

Wasted-time results.png
Training time wasted due to failure recovery under three checkpointing schemes: a naïve implementation of a remote-storage scheme (blue); a remote-storage scheme optimized to maximize the use of network bandwidth (orange); and Gemini (green).

Acknowledgments: Zhen Zhang, Xinwei Fu, Yida Wang

Research areas

Related content

US, CA, Culver City
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are forming a new organization within Prime Video to redefine our operational landscape through the power of artificial intelligence. As a Applied Scientist within this initiative, you will be a technical leader helping to design and build the intelligent systems that power our vision. You will tackle complex and ambiguous problems, designing and delivering scalable and resilient agentic AI and ML solutions from the ground up. You will not only write high-quality, maintainable software and models, but also mentor other scientists, influence our technical strategy, and drive engineering best practices across the team. Your work will directly contribute to making Prime Video's operations more efficient and will set the technical foundation for years to come. Key job responsibilities • Lead the design and architecture of highly scalable, available, and resilient services for our AI automation platform. • Write high-quality, maintainable, and robust code to solve complex business problems, building flexible systems without over-engineering. • Act as a technical leader and mentor for other engineers on the team, assisting with career growth and encouraging excellence. • Work through ambiguous requirements, cut through complexity, and translate business needs into scalable technical solutions. • Take ownership of the full software development lifecycle, including design, testing, deployment, and operations. • Work closely with product managers, scientists, and other engineers to build and launch new features and systems. About the team This role offers a unique opportunity to shape the future of one of Amazon's most exciting businesses through the application of AI technologies. If you're passionate about leveraging AI to drive real-world impact at massive scale, we want to hear from you.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, NY, New York
The Ads Measurement Science team in the Measurement, Ad Tech, and Data Science (MADS) team of Amazon Ads serves a centralized role developing solutions for a multitude of performance measurement products. We create solutions which measure the comprehensive impact of advertiser's ad spend, including sales impacts both online and offline and across timescales, and provide actionable insights that enable our advertisers to optimize their media portfolios. We also own the science solutions for AI tools that unlock new insights and automate high-effort customer workflows, such as custom query and report generation based on natural language user requests. We leverage a host of scientific technologies to accomplish this mission, including Generative AI, classical ML, Causal Inference, Natural Language Processing, and Computer Vision. As an Applied Scientist on the team, you will lead measurement solutions end-to-end from inception to production. You will propose, design, analyze, and productionize models to provide novel measurement insights to our customers. Key job responsibilities - Leverage deep expertise in one or more scientific disciplines to invent solutions to ambiguous ads measurement problems - Disambiguate problems to propose clear evaluation frameworks and success criteria - Work autonomously and write high quality technical documents - Implement a significant portion of critical-path code, and partner with engineers to directly carry solutions into production - Partner closely with other scientists to deliver large, multi-faceted technical projects - Share and publish works with the broader scientific community through meetings and conferences - Communicate clearly to both technical and non-technical audiences - Contribute new ideas that shape the direction of the team's work - Mentor more junior scientists and participate in the hiring process About the team We are a team of scientists across Applied, Research, Data Science and Economist disciplines. You will work with colleagues with deep expertise in ML, NLP, CV, Gen AI, and Causal Inference with a diverse range of backgrounds. We partner closely with top-notch engineers, product managers, sales leaders, and other scientists with expertise in the ads industry and on building scalable modeling and software solutions.
US, WA, Seattle
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, WA, Bellevue
Are you inspired by invention? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Last Mile Simulations and Analytics Engineering team. WW AMZL Simulations and Analytics Engineering team is looking to build out our Simulation team to drive innovation across our Last Mile network. We start with the customer and work backwards in everything we do. If you’re interested in joining a rapidly growing team working to build a unique, solutions advisory group with a relentless focus on the customer, you’ve come to the right place. This is a blue-sky role that gives you a chance to roll up your sleeves and dive into big data sets in order to build discrete event 3D simulations using tools like Flexsim, Anylogic, Emulate 3D etc and experimentation systems at scale, build optimization algorithms and leverage cutting-edge technologies across Amazon. This is an opportunity to think big about how to solve a challenging problem for the customers. As a Simulation Scientist, you are expected to deep dive into complex problems and drive relentlessly towards innovative solutions working with cross functional teams. Be comfortable interfacing and influencing various functional teams and individuals at all levels of the organization in order to be successful. Lead strategic modelling and simulation projects related to drive process design decisions. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. You will apply cutting edge designs and methodologies for complex use cases across Last Mile network to drive innovation. In addition, you will contribute to the end state vision for simulation and experimentation of future delivery stations at Amazon. Key job responsibilities Key job responsibilities • Lead the design, implementation, and delivery of the simulation data science solutions to perform system of systems discrete event simulations for significantly complex operational processes that have a long-term impact on a product, business, or function using FlexSim, Demo 3D, AnyLogic or any other Discrete Event Simulation (DES) software packages • Lead strategic modeling and simulation research projects to drive process design decisions • Be an exemplary practitioner in simulation science discipline to establish best practices and simplify problems to develop discrete event simulations faster with higher standards • Identify and tackle intrinsically hard process flow simulation problems (e.g., highly complex, ambiguous, undefined, with less existing structure, or having significant business risk or potential for significant impact • Deliver artifacts that set the standard in the organization for excellence, from process flow control algorithm design to validation to implementations to technical documents using simulations • Be a pragmatic problem solver by applying judgment and simulation experience to balance cross-organization trade-offs between competing interests and effectively influence, negotiate, and communicate with internal and external business partners, contractors and vendors for multiple simulation projects • Provide simulation data and measurements that influence the business strategy of an organization. Write effective white papers and artifacts while documenting your approach, simulation outcomes, recommendations, and arguments • Lead and actively participate in reviews of simulation research science solutions. You bring clarity to complexity, probe assumptions, illuminate pitfalls, and foster shared understanding within simulation data science discipline • Pay a significant role in the career development of others, actively mentoring and educating the larger simulation data science community on trends, technologies, and best practices • Use advanced statistical /simulation tools and develop codes (python or another object oriented language) for data analysis , simulation, and developing modeling algorithms • Lead and coordinate simulation efforts between internal teams and outside vendors to develop optimal solutions for the network, including equipment specification, material flow control logic, process design, and site layout • Deliver results according to project schedules and quality A day in the life If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a highly innovative product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Science manager to join our Applied AI team and lead a cross-functional team of scientists and engineers who work on LLM-based solutions. On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. You will be responsible for leading a cross functional team of scientists and engineer and developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are seeking an experienced Senior Applied Science Manager who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in leading teams that build highly scalable systems and system design, have excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. Your work will directly impact our customers in the form of novel products and services.
US, WA, Seattle
The Seller Fees organization drives the monetization infrastructure powering Amazon's global marketplace, processing billions of transactions for over two million active third-party sellers worldwide. Our team owns the complete technical stack and strategic vision for fee computation systems, leveraging advanced machine learning to optimize seller experiences and maintain fee integrity at unprecedented scale. We're seeking an exceptional Applied Scientist to push the boundaries of large-scale ML systems in a business-critical domain. This role presents unique opportunities to • Architect and deploy state-of-the-art transformer-based models for fee classification and anomaly detection across hundreds of millions of products • Pioneer novel applications of multimodal LLMs to analyze product attributes, images, and seller metadata for intelligent fee determination • Build production-scale generative AI systems for fee integrity and seller communications • Advance the field of ML through novel research in high-stakes, large-scale transaction processing • Develop SOTA causal inference frameworks integrated with deep learning to understand fee impacts and optimize seller outcomes • Collaborate with world-class scientists and engineers to solve complex problems at the intersection of deep learning, economics, and large business systems. If you're passionate about advancing the state-of-the-art in applied ML/AI while tackling challenging problems at global scale, we want you on our team! Key job responsibilities Responsibilities: . Design measurable and scalable science solutions that can be adopted across stores worldwide with different languages, policy and requirements. · Integrate AI (both generative and symbolic) into compound agentic workflows to transform complex business systems into intelligent ones for both internal and external customers. · Develop large scale classification and prediction models using the rich features of text, image and customer interactions and state-of-the-art techniques. · Research and implement novel machine learning, statistical and econometrics approaches. · Write high quality code and implement scalable models within the production systems. · Stay up to date with relevant scientific publications. · Collaborate with business and software teams both within and outside of the fees organization.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
CA, BC, Vancouver
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems.