Customer-obsessed science
Research areas
-
November 28, 20254 min readLarge language models are increasing the accuracy, reliability, and consistency of the product catalogue at scale.
-
November 20, 20254 min read
-
October 20, 20254 min read
-
October 14, 20257 min read
-
October 2, 20253 min read
Featured news
-
ECML-PKDD 20222022Related product recommendation (RPR) is pivotal to the success of any e-commerce service. In this paper, we deal with the problem of recommending related products i.e., given a query product, we would like to suggest top-k products that have high likelihood to be bought together with it. Our problem implicitly assumes asymmetry i.e., for a phone, we would like to recommend a suitable phone case, but for
-
Interspeech 20222022The recurrent neural network transducer (RNN-T) is a prominent streaming end-to-end (E2E) ASR technology. In RNN-T, the acoustic encoder commonly consists of stacks of LSTMs. Very recently, as an alternative to LSTM layers, the Conformer architecture was introduced where the encoder of RNN-T is replaced with a modified Transformer encoder composed of convolutional layers at the frontend and between attention
-
Interspeech 20222022We address performance fairness for speaker verification using the adversarial reweighting (ARW) method. ARW is reformulated for speaker verification with metric learning, and shown to improve results across different subgroups of gender and nationality, without requiring annotation of subgroups in the training data. An adversarial network learns a weight for each training sample in the batch so that the
-
Interspeech 20222022This paper investigates an incremental learning framework for a real-world voice assistant employing RNN-Transducer based automatic speech recognition (ASR) model. Such a model needs to be regularly updated to keep up with changing distribution of customer requests. We demonstrate that a simple fine-tuning approach with a combination of old and new training data can be used to incrementally update the model
-
Interspeech 20222022Inference with large deep learning models in resource-constrained settings is increasingly a bottleneck in real-world applications of state-of-the-art AI. Here we address this by low-precision weight quantization. We achieve very low accuracy degradation by reparameterizing the weights in a way that leaves the weight distribution approximately uniform. We show lower bit-width quantization and less accuracy
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all