Alexa’s spoken-language-understanding research at Interspeech 2022

Methods for learning from noisy data, using phonetic embeddings to improve entity resolution, and quantization-aware training are a few of the highlights.

Interspeech, the world’s largest and most comprehensive conference on the science and technology of spoken-language processing, takes place this week in Incheon, Korea, with Amazon as a platinum sponsor. Amazon Science asked three of Alexa AI’s leading scientists — in the fields of speech, spoken-language-understanding, and text-to-speech — to highlight some of Amazon’s contributions to the conference.

Related content
Research from Alexa Speech covers a range of topics related to end-to-end neural speech recognition and fairness.

In this installment, senior principal scientist Gokhan Tur selects a few representative papers covering a wide range of topics in spoken-language understanding.

"Learning under label noise for robust spoken language understanding systems"

While deep-learning-based approaches have shown superior results for benchmark evaluation tasks, their performance degrades significantly when the training data is noisy. This is typically due to memorization, in which the model simply learns one-to-one correspondences between specific inputs and specific classifications, and the problem is especially acute for overparameterized models, which are already prone to overfitting. In this paper, the Alexa researchers perform a systematic study introducing various levels of controlled noise to the training data and explore five different label noise mitigation strategies for the task of intent classification:

  • Noise layer learns the noise distribution, adding a final layer to the model.
  • Robust loss uses both active loss (maximizing the probability of being in the labeled class) and passive loss (minimizing the probabilities of being in other classes).
  • LIMIT augments the objective function with the mutual information between model weights and the labels conditioned on data instances, to reduce memorization.
  • Label smoothing regularizes the model by replacing the hard 0 and 1 classification targets with smoothed values.
  • Early stopping aims to prevent overfitting by stopping when the validation error starts to increase.
Mitigation accuracies.png
The accuracy of various mitigation methods on public datasets. Top accuracy scores in bold.

The results table shows the effectiveness of these methods for the well-known language-understanding datasets ATIS, SNIPS, and TOP, for different noise levels. First, the researchers have shown that for each of the datasets, the accuracy of the baseline model (DistillBERT) has degraded more than 30%, with 50% noise level. The paper reports that all mitigation methods are effective in alleviating this degradation. The LIMIT approach performs best and is able to recover more than 80% of the dropped accuracy with 50% noise level and more than 96% with 20% noise level.

“Phonetic embedding for ASR robustness in entity resolution”

In Alexa, entity resolution (ER) is the task of retrieving the index of an entity given various ways of describing it in natural language. Phonetic variations are one big category of errors, such as “chip and potato” being recognized as “shipping potato”. While lexical and phonetic search methods are a straightforward way to resolve such errors, they are suboptimal since they cannot tell which pairs of phrases are more likely to be confused.

Related content
New model sets new standard in accuracy while enabling 60-fold speedups.

In this paper, Alexa researchers propose to employ phonetic embeddings based on the pronunciations of such phrases, where the similarity of pronunciation is directly reflected by the embedding-vector distance. Then they employ a neural vector search mechanism using a Siamese network to improve the robustness of the ER task against automatic speech recognition (ASR) noise. The phonetic embedding is combined with the semantic embedding from a pretrained BERT model. They also experimented with using the ASR n-best hypotheses as an input during training.

Weighted-sum model.png
The architecture of the weighted-sum model.

The paper presents results using the Video and Book domains in Alexa. In the evaluation of retrieval tests, the researchers see that, compared to the lexical-search baseline, the phonetic-embedding-based approach reduces the error rate by 44% in the Video domain and by 35% in the Book domain. With the ASR n-best data augmentation, they further reduce the error rate to 50% in the Video domain.

“Squashed weight distribution for low bit quantization of deep models”

Large deep-learning models — especially Transformer-based ones — have been shown to achieve state-of-the art performance on many public benchmark tasks. But their size often makes them impractical for real-world applications with memory and latency constraints. To this end, researchers have proposed various compression methods, such as pruning weights, distillation, and quantization.

Related content
Combination of distillation and distillation-aware quantization compresses BART model to 1/16th its size.

Quantization divides a variable’s possible values into discrete intervals, and maps all values in each interval to a single, representative value. It is a straightforward process with “bit-widths” of eight bits or more, meaning that each representative value has an eight-bit (or larger) index. It’s often applied after full-precision training of a model, but to avoid a mismatch between training and testing, researchers are turning to quantization-aware training approaches, where quantization noise is injected in the forward pass.

In this paper, Alexa researchers present the lowest reported quantization bit-widths for compressed Transformer models. They show only 0.2% relative degradation on public GLUE benchmarks with three-bit quantization and 0.4% relative degradation on Alexa data with only two-bit quantization. They achieve this with a reparameterization of the weights that squashes the distribution and by introducing a regularization term to the training loss to control the mean and variance of the learned model parameters.

The main idea is optimizing the overall distribution of weights under the well-known stochastic-gradient-descent (SGD) approach to training using a novel weight transformation that causes SGD to learn approximately uniformly distributed weights instead of the typical Gaussian distribution.

“Impact of acoustic event tagging on scene classification in a multi-task learning framework”

This paper explores the use of acoustic event tagging (AET) for improving the task of acoustic scene classification (ASC). Acoustic events represent information at levels of abstraction such as “car engine”, “dog-bark”, etc., while scenes are collections of acoustic events in no particular temporal order that represent information at higher levels of abstraction, such as “street traffic” and “urban park”. Previous studies suggest that humans leverage event information for scene classification. For instance, knowledge of the event “jet-engine” helps classify a given acoustic scene as “airport” instead of “shopping mall”.

Related content
Knowledge distillation technique for shrinking neural networks yields relative performance increases of up to 122%.

In this paper, Alexa researchers propose jointly training a deep-learning model to perform both AET and ASC, using a multitask-learning approach that uses a weighted combination of the individual AET and ASC losses. They show that this method lowers the ASC error rate by more than 10% relative to the baseline model and outperforms a model pretrained with AET first and then fine-tuned on ASC.

Multitask network.png
The ASC and AET baselines, along with the multitask network presented in the Amazon researchers’ paper.

“L2-GEN: A neural phoneme paraphrasing approach to L2 speech synthesis for mispronunciation diagnosis”

For machine learning models that help users learn English as a second language (ESL), mispronunciation detection and diagnosis (MDD) is an essential task. However, it is difficult to obtain non-native (L2) speech audio with fine-grained phonetic annotations. In this paper, Alexa researchers propose a speech synthesis system for generating mispronounced speech mimicking L2 speakers.

L2-GEN.png
The architecture of the L2-GEN framework.

The core of the system is a state-of-the-art Transformer-based sequence-to-sequence machine translation model. The L1 reference phoneme sequence of a word is treated as the source text and its corresponding mispronounced L2 phoneme sequences as "paraphrased" target texts. The researchers’ experiments demonstrate the effectiveness of the L2-GEN system in improving MDD accuracy on public benchmark evaluation sets.

Research areas

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques