Customer-obsessed science
Research areas
-
November 20, 20254 min readA new evaluation pipeline called FiSCo uncovers hidden biases and offers an assessment framework that evolves alongside language models.
-
-
-
September 2, 20253 min read
-
Featured news
-
ICRA 20242024In this paper, we present a probabilistic and unconstrained model predictive control formulation for robot navigation under uncertainty. We present (1) a closed-form approximation of the probability of collision that naturally models the propagation of uncertainty over the planning horizon and is computationally cheap to evaluate, and (2) a collision-cost formulation which provably preserves forward invariance
-
AAAI 2024 Edge Intelligence Workshop2024In Video Question Answering, videos are often processed as a full-length frame sequence to ensure minimal information loss. Recent works have shown evidence that sparse video inputs are sufficient to maintain high performance. However, they usually discuss single frame selection. In our work, we extend the setting to various input lengths and other modalities, and characterize the task with different input
-
ICRA 20242024When a mobile robot autonomously explores an indoor space to produce a localization and navigation map, it is important to create both a stable pose graph and a high-quality occupancy map that covers all the navigable areas. In this work, we propose a novel probabilistic active loop closure framework which attempts to maximally reduce pose graph uncertainty during exploration and improves occupancy map
-
2024The Segment Anything Model (SAM) stands as a foundational framework for image segmentation. While it exhibits remarkable zero-shot generalization in typical scenarios, its advantage diminishes when applied to specialized domains like medical imagery and remote sensing. To address this limitation, this paper introduces Conv-LoRA, a simple yet effective parameter-efficient fine-tuning approach. By integrating
-
EACL 20242024Users of AI-based virtual assistants and search systems encounter challenges in articulating their intents while seeking information on unfamiliar topics, possibly due to complexity of the user’s intent or the lack of meta-information on the topic. We posit that an iterative suggested question-answering (SQA) conversation can improve the trade-off between the satisfaction of the user’s intent while keeping
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all