Jon Tamir_Lab_Photos_0001.jpg
Jon Tamir, an assistant professor of electrical and computer engineering at the University of Texas at Austin, wants to improve how MRI data is acquired. In 2020, he received an Amazon Machine Learning Research Award to support the work.
The University of Texas at Austin

How new machine learning techniques could improve MRI scans

Amazon Research Award recipient Jonathan Tamir is focusing on deriving better images faster.

For many patients, time moves at a glacial pace during a magnetic resonance imaging (MRI) scan. Those who have had one know the challenge of holding impossibly still inside a buzzing, knocking scanner for anywhere from several minutes to more than an hour.

Jonathan (Jon) Tamir is developing machine learning methods to shorten exam times and extract more data from this essential — but often uncomfortable — imaging process.

AWS re:Invent 2022: Impact through cutting-edge ML research with Amazon Research Awards

MRI machines use the body's response to strong magnetic fields and radiofrequency waves to produce pictures of our insides, helping to detect disease and monitor treatments. Just like any image, an MRI scan begins with raw data. Tamir, who is an assistant professor of electrical and computer engineering at the University of Texas at Austin, wants to improve how that data is acquired and derive better images faster. In 2020, he received an Amazon Machine Learning Research Award from Amazon Web Services (AWS) to support the work.

A lack of 'ground-truth' MRI data

Contrary to how the experience might feel to patients inside them, MRI machines move incredibly fast, collecting thousands of measurements at intervals spanning tens or hundreds of milliseconds. The measurements depend on the order and frequency of how magnetic forces and radiofrequency currents are applied to the area being surveyed. Clinicians run specific sequences tailored to the body part and purpose for the MRI.

CT scanner
MRI machines move incredibly fast, collecting thousands of measurements at intervals spanning tens or hundreds of milliseconds. The measurements depend on the order and frequency of how magnetic forces and radiofrequency currents are applied to the area being surveyed. Clinicians run specific sequences tailored to the body part and purpose for the MRI.
Engelstad Photography/Image Supply Co/Adobe

To get the highest possible image quality, an MRI technologist must collect all possible measurements, building from low to high frequency. Each layer of added data results in clearer and more detailed images, but collecting that much data takes far too long. Given the need for expedience, only a subset of the data can be acquired. Which data? "That depends on how we're planning to reconstruct the image," Tamir explained.

At his Computational Sensing and Imaging Lab, Tamir is working with colleagues to optimize both the methods for capturing scans and the image reconstruction algorithms that process the raw information. A key problem: lack of available "ground-truth" data: "That's a very big issue in medical imaging compared to the rest of the machine learning world,” he says.

Related content
Gari Clifford, the chair of the Department of Biomedical Informatics at Emory University and an Amazon Research Award recipient, wants to transform healthcare.

With millions of MRIs generated each year in the United States alone, it might seem surprising that Tamir and colleagues lack data. The final image of an MRI, however, has been post-processed down to a few megabytes. The raw measurements, on the other hand, might amount to hundreds of megabytes or gigabytes that aren't saved by the scanner.

"Different research groups spend a lot of effort building high-quality datasets of ground-truth data so that researchers can use it to train algorithms," Tamir said. "But these datasets are very, very limited."

Another issue, he added, is the fact that many MRIs aren't static images. They are movies of a biological process, such as a heart beating. An MRI scanner is not fast enough to collect fully sampled data in those cases.

Random sampling

Tamir and colleagues are working on machine learning algorithms that can learn from limited data to fill in the blanks, so to speak, on images. One tactic being explored by Tamir and others is to randomly collect about 25% of the possible data from a scan and train a neural network to reconstruct an entire image based on that under-sampled data. Another strategy is to use machine learning to optimize the sampling trajectory in the first place.

Related content
With an encoder-decoder architecture — rather than decoder only — the Alexa Teacher Model excels other large language models on few-shot tasks such as summarization and machine translation.

"Random sampling is a very convenient approach, but we could use machine learning to decide the best sampling trajectory and figure out which points are most important," he said.

In “Robust Compressed Sensing MRI with Deep Generative Priors”, which was presented at the Neural Information Processing Systems (NeurIPS) 2021 conference, Tamir and colleagues at UT-Austin demonstrated a deep learning technique that achieves high-quality image reconstructions based on under-sampled scans from New York University’s fastMRI dataset and the MRIData.org dataset from Stanford University and University of California (UC) Berkeley. Both are publicly available for research and education purposes.

MRI scan stock image
At his Computational Sensing and Imaging Lab, Jon Tamir is working with colleagues to optimize both the methods for capturing scans and the image reconstruction algorithms that process the raw information.
Engelstad Photography/Image Supply Co/Adobe

Other approaches to the problem of image reconstruction have utilized end-to-end supervised learning, which performs well when trained on specific anatomy and measurement models but tends to degrade when faced with the aberrations common in clinical practice.

Instead, Tamir and colleagues used distribution learning, in which a probabilistic model learns to approximate images without reference to measurements. In this case, the model can be used both when the measurement process changes, for example, when changing the sampling trajectory, as well as when the imaging anatomy changes, such as when switching from brain scans to knee scans that the model hasn’t seen before.

'"We're really excited to use this as a base model for tackling these bigger issues we’ve been talking about, such as optimally choosing the measurements to collect, and working with less fully available ground-truth data," Tamir said.

Tamir and his colleagues have published three additional papers related to the Amazon Research Award. One focuses on using hyberbolic geometry to represent data; another uses unrolled alternating optimization to speed MRI reconstruction. Tamir has also developed an open-source simulator for MRI that can be run on GPUs in a distributed way to find the best scan parameters for a specific reconstruction.

The road to clinical adoption

A conventional MRI assembles the image via calculations based on the fast Fourier transform, a bedrock algorithm that resolves combinations of different frequencies. "An inverse fast Fourier transform is all it takes to turn the raw data into an image," he said. "That can happen in less than a few milliseconds. It's very simple."

But in his work with machine learning, Tamir is doing those basic operations in an iterative way, performing a Fourier transform operation hundreds or thousands of times and then layering on additional types of computation.

We're not just trying to come up with cool methods that beat the state of the art in this controlled lab environment. We actually want to use it in the hospital, with the goal of improving patient outcomes.
Jon Tamir

Those calculations are performed in the Amazon Web Services cloud. The ability to do so as quickly as possible is key not only from a research perspective but also a clinical one. That's because even if the method of taking the raw measurements speeds up the MRI, the clinician still must check the quality of the image while the patient is present.

“If we have a fast scan, but now the reconstruction takes 10 minutes or an hour, then that's not going to be clinically feasible," he said. "We're extending this computation, but we need to do it in a way that maintains efficiency."

In addition to AWS cloud services, Tamir has used AWS Lambda to break the image reconstruction down pixel-by-pixel, sending small bits of data to different Lambda nodes, running the computation, and then aggregating the results.

Related content
Science-based recommendations from the Digital Wellness Lab could inform the development of digital products that help children.

Tamir was already familiar with AWS from his work as a graduate student at UC Berkeley, where he earned his doctorate in electrical engineering. There, he worked with Michael (Miki) Lustig, a professor of electrical engineering and computer science, on using deep learning to reduce knee scan times for patients at Stanford Children's Hospital.

As an undergrad, Tamir explored his interest in digital signal processing through unmanned aerial vehicles (UAVs), working on methods for detecting objects on the ground. After taking Lustig's Principles of MRI course at UC Berkeley, he fell in love with MRI: "It had all of the same mathematical excitement that imaging for UAVs had, but it was also something you could visually see, which was just so cool, and it had a really important societal impact."

Tamir also works with clinicians to understand MRI issues in practice. He and Léorah Freeman, a neurologist who works with multiple sclerosis (MS) patients at UT Health Austin, are trying to figure out how machine learning approaches could make brain scans faster while also detecting attributes that humans might not see.

Related content
Using social media data, the University of Maryland's Philip Resnik aims to help clinicians prioritize individuals who may need immediate attention.

"Tissues that look healthy to the naked eye on the brain MRI may not be healthy if we were to look at them under the microscope," Freeman said. "When we use artificial intelligence, we can look broadly into the brain and try to identify changes that may not be perceptible to the naked eye that can relate to how a patient is doing, how they're going to do in the future, and how they respond to a therapy."

Tamir and Freeman are starting by scanning the brains of healthy volunteers to establish control images to compare with those of MS patients. He hopes that the machine learning method presented at NeurIPS can be tailored to patients with MS at the Dell Medical School in Austin. It could be five to 10 years, he said, before a given method makes its way into standard MRI protocols. But that is Tamir's main goal: clinical adoption.

"We're not just trying to come up with cool methods that beat the state of the art in this controlled lab environment," he said. "We actually want to use it in the hospital, with the goal of improving patient outcomes.”

Research areas

Related content

US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.