Philip Resnik, standing in the background, and a colleague in the Computational Linguistics and Information Processing Laboratory on the Maryland campus are seen collaborating together while looking at display screens
Philip Resnik, standing, is a computational linguist at the University of Maryland. He is working to apply machine learning techniques to social media data in an attempt to make predictions about important aspects of mental health.
Credit: John T. Consoli / University of Maryland

How a university researcher is using machine learning to help identify suicide risk

Using social media data, the University of Maryland's Philip Resnik aims to help clinicians prioritize individuals who may need immediate attention.

Philip Resnik was a computer science undergrad at Harvard when he accompanied a friend to her linguistics class. Through that course, he discovered a fascination with language. Given his background, he naturally approached the topic from a computational perspective.

AWS re:Invent 2022: Impact through cutting-edge ML research with Amazon Research Awards

Now a professor at the University of Maryland in the Department of Linguistics and the Institute for Advanced Computer Studies, Resnik has been doing research in computational linguistics for more than 30 years. One of his goals is to use technology to make progress on social problems. Influenced by his wife, clinical psychologist Rebecca Resnik, he became especially interested in applying computational models to identify linguistic signals related to mental health.

“Language is a crucial window into people's mental state,” Resnik said.

Related content
Gari Clifford, the chair of the Department of Biomedical Informatics at Emory University and an Amazon Research Award recipient, wants to transform healthcare.

With the support of Amazon’s Machine Learning Research Award (MLRA), he and his colleagues are currently applying machine learning techniques to social media data in an attempt to make predictions about important aspects of mental health, including the risk of suicide.

Developing more sophisticated tools to prevent suicide is a pressing issue in the United States. Suicide was the second leading cause of death among people between the ages of 10 and 34 in 2018, according to the Centers for Disease Control and Prevention (CDC). Among all ages that year, more than 48,000 Americans died by suicide. Resnik noted the COVID-19 pandemic has further increased the urgency of this problem via an “echo pandemic.” That term has been used by some in the mental health community to characterize the long-term mental health effects of sustained isolation, anxiety, and disruption of normal life.

The value of social media data

Machine learning research projects on mental health historically have relied on various types of data, such as health records and clinical interviews. But Resnik and other researchers have found that social media provides an additional layer of information, giving a glimpse into the everyday experiences of patients when they are not being evaluated by a mental healthcare provider.

Mindful of privacy and ethical concerns, Resnik envisions a system where patients who are already seeing a mental health professional are given the option to consent for access to their social media data for this monitoring purpose.

Philip Resnik, a professor at the University of Maryland in the Department of Linguistics and the Institute for Advanced Computer Studies, is seen standing in a hallway
Philip Resnik says one of his goals is to use technology to make progress on social problems. “Language is a crucial window into people's mental state,” he says.
Credit: John T. Consoli / University of Maryland

“Healthcare visits, where problems can be identified, are relatively few and far between compared to what so many people are doing every day, posting about their lived experience on social media,” Resnik said. The idea is to use social media data to discover patterns that are predictive, for example, of someone with schizophrenia having a psychotic episode, or someone with depression having a suicidal crisis.

Related content
ARA recipient is using artificial intelligence to help doctors make decisions based on radiological data.

The project is still in the technology research stage, said Resnik, but the ultimate goal is to have a practical impact by allowing mental healthcare professionals to access previously unavailable information about the people that they're helping treat.

These predictions are made possible via supervised machine learning. In this scenario, the model utilizes datasets comprised of social media posts to learn how to identify patterns or properties to make a prediction after being given a large number of correct examples.

In order to do this work, Resnik and colleagues are using social media data donated by volunteers using two sites, “OurDataHelps” and “OurDataHelps: UMD”, as well as data from Reddit. All their work receives careful ethical review and they take extra steps to anonymize the users, such as automatically masking anything that resembles a name or a location.

Prioritizing at-risk individuals

Previous work that used machine learning to make mental health predictions has generally aimed to make binary distinctions. For example: Should this person be flagged as at risk or not? However, Resnik and his team believe that simply flagging people who might require attention is not enough.

Related content
Amazon Research Award recipient Jonathan Tamir is focusing on deriving better images faster.

In the United States, more than 120 million people live in areas with mental healthcare provider shortages, according to the Bureau of Health Workforce. “This means that even if they know they need help with a mental health problem, they are likely to have a hard time seeing the mental healthcare provider, because there aren’t enough providers,” Resnik noted.

What happens when software identifies even more people that might need help in an already overburdened system? The answer, he said, is to find ways to help prioritize the cases that need the most attention the soonest.

You have a pipeline where, at every stage that you assess the patient, there might be an appropriate intervention. The idea is to find the right level of care across the population, as opposed to simply making a binary distinction.
Philip Resnik

This is why Resnik’s team shifted their emphasis from simple classification to prioritization. In one approach, a healthcare provider would be informed which patients are more at risk and require the most immediate attention. The system would not only rank the most at-risk individuals, but also rank, for each of them, which social media posts were most indicative of that person’s mental state. This way, when the provider got an alert, they wouldn’t have to go through possibly hundreds of social media updates to better evaluate that person’s condition. Instead, they would be shown the most concerning posts up front.

Resnik and colleagues described this in a recent paper. Although the idea hasn’t yet been put into practice by clinicians, it was developed in consultation with experts from organizations such as the American Association of Suicidology who provided valuable input and feedback into how these technologies should be designed to be both effective and ethical.

Resnik’s team is also working on another approach to patient prioritization, a system that would rely on multiple stages of patient assessment. For example, patients’ social media data could be evaluated unintrusively in the first stage. A subset of individuals then might be invited to go through to a second, interactive, stage, such as responding to questions through an automatic system where their answers and properties of their speech, for example their speaking rate and the quality of their voice, would be evaluated through machine learning techniques. Among those, the individuals at most immediate or serious risk could be directed to a third stage of evaluation that would involve a human being.

“You have a pipeline where, at every stage that you assess the patient, there might be an appropriate intervention,” Resnik said. “The idea is to find the right level of care across the population, as opposed to simply making a binary distinction.”

Both of these approaches have been supported by the MLRA. “It has been helpful not only in terms of the AWS credits to build infrastructure and the funding for graduate students, but also the engagement with people at Amazon,” said Resnik. “We’ve had active conversations with people inside AWS, who are themselves responsible for building important tools. The relationship that I have, as a researcher, with Amazon has been enormously helpful.”

Building a secure environment for sensitive data

Previous funding from the MLRA also helped sponsor the development of a secure computational environment to house mental health data. This is an important step to advance research in machine learning for mental health, as one of the main obstacles in this field is obtaining access to this very sensitive data.

The goal of this joint project between the University of Maryland and the independent research institution NORC at the University of Chicago: give qualified researchers ethical and secure access to mental health datasets. The resulting Mental Health Data Enclave, hosted on AWS, is designed to let researchers access datasets remotely from their own computers and work with them inside a secure environment, without ever being able to copy or send the data elsewhere.

The enclave will be used this spring for an exercise at the Computational Linguistics and Clinical Psychology Workshop (held in conjunction with NAACL), an event that brings together clinicians and technologists. A sensitive mental health dataset will be shared among different teams, who will work on it within the enclave to solve a problem. The solutions will then be discussed at the workshop.

Resnik said that the AWS award will make it possible for all the teams to ethically access and work on this sensitive data. “I view this as a proof of concept for what I hope will become a lasting paradigm going forward, where we use secure environments to get the community working in a shared way on sensitive data,” he added. “This is the way that real progress has been made for decades in other research areas.”  Crucially, though, Resnik observes, research progress is not an end in itself: ultimately it needs to feed into practical and ethical deployment within the mental healthcare ecosystem. As he and collaborating suicide prevention experts noted in a recent article, “The key to progress is closer and more consistent engagement of the suicidology and technology communities.”

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Research areas

Related content

US, CA, Santa Clara
About Amazon Health Amazon Health’s mission is to make it dramatically easier for customers to access the healthcare products and services they need to get and stay healthy. Towards this mission, we (Health Storefront and Shared Tech) are building the technology, products and services, that help customers find, buy, and engage with the healthcare solutions they need. Job summary We are seeking an exceptional Applied Scientist to join a team of experts in the field of machine learning, and work together to break new ground in the world of healthcare to make personalized and empathetic care accessible, convenient, and cost-effective. We leverage and train state-of-the-art large-language-models (LLMs) and develop entirely new experiences to help customers find the right products and services to address their health needs. We work on machine learning problems for intent detection, dialogue systems, and information retrieval. You will work in a highly collaborative environment where you can pursue both near-term productization opportunities to make immediate, meaningful customer impacts while pursuing ambitious, long-term research. You will work on hard science problems that have not been solved before, conduct rapid prototyping to validate your hypothesis, and deploy your algorithmic ideas at scale. You will get the opportunity to pursue work that makes people's lives better and pushes the envelop of science. Key job responsibilities - Translate product and CX requirements into science metrics and rigorous testing methodologies. - Invent and develop scalable methodologies to evaluate LLM outputs against metrics and guardrails. - Design and implement the best-in-class semantic retrieval system by creating high-quality knowledge base and optimizing embedding models and similarity measures. - Conduct tuning, training, and optimization of LLMs to achieve a compelling CX while reducing operational cost to be scalable. A day in the life In a fast-paced innovation environment, you work closely with product, UX, and business teams to understand customer's challenges. You translate product and business requirements into science problems. You dive deep into challenging science problems, enabling entirely new ML and LLM-driven customer experiences. You identify hypothesis and conduct rapid prototyping to learn quickly. You develop and deploy models at scale to pursue productizations. You mentor junior science team members and help influence our org in scientific best practices. About the team We are the ML Science and Engineering team, with a strong focus on Generative AI. The team consists of top-notch ML Scientists with diverse background in healthcare, robotics, customer analytics, and communication. We are committed to building and deploying the most advanced scientific capabilities and solutions for the products and services at Amazon Health. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
US, WA, Seattle
We are designing the future. If you are in quest of an iterative fast-paced environment, where you can drive innovation through scientific inquiry, and provide tangible benefit to hundreds of thousands of our associates worldwide, this is your opportunity. Come work on the Amazon Worldwide Fulfillment Design & Engineering Team! We are looking for an experienced and senior Research Scientist with background in Ergonomics and Industrial Human Factors, someone that is excited to work on complex real-world challenges for which a comprehensive scientific approach is necessary to drive solutions. Your investigations will define human factor / ergonomic thresholds resulting in design and implementation of safe and efficient workspaces and processes for our associates. Your role will entail assessment and design of manual material handling tasks throughout the entire Amazon network. You will identify fundamental questions pertaining to the human capabilities and tolerances in a myriad of work environments, and will initiate and lead studies that will drive decision making on an extreme scale. .You will provide definitive human factors/ ergonomics input and participate in design with every single design group in our network, including Amazon Robotics, Engineering R&D, and Operations Engineering. You will work closely with our Worldwide Health and Safety organization to gain feedback on designs and work tenaciously to continuously improve our associate’s experience. Key job responsibilities - Collaborating and designing work processes and workspaces that adhere to human factors / ergonomics standards worldwide. - Producing comprehensive and assessments of workstations and processes covering biomechanical, physiological, and psychophysical demands. - Effectively communicate your design rationale to multiple engineering and operations entities. - Identifying gaps in current human factors standards and guidelines, and lead comprehensive studies to redefine “industry best practices” based on solid scientific foundations. - Continuously strive to gain in-depth knowledge of your profession, as well as branch out to learn about intersecting fields, such as robotics and mechatronics. - Travelling to our various sites to perform thorough assessments and gain in-depth operational feedback, approximately 25%-50% of the time. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
This single-threaded leader will focus on designing experiences and optimizations to monetize Amazon Detail Pages, while improving shopper experience and returns for our advertising customers. This leader will own generating different widgets (thematic, blended, interactive prompt, hybrid merchandising), and the science, tech and signaling systems to enable them for the different category and BuyX teams. This leader will also own science and systems for bidding into ranking systems like Percolate, and for operating the marketplace through allocation and pricing methods. They will own identifying operating points for WW marketplaces in terms of entitlement, RoAS impact and other benchmarks, plus invent ways to operationalize this thinking, all while experimenting to learn from the marketplace. The leader will also own AI generation of shopping pages for monetization (these shopping pages are built on DP content). We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Santa Monica
Amazon Advertising is looking for a motivated and analytical self-starter to help pave the way for the next generation of insights and advertising products. You will use large-scale data, advertising effectiveness knowledge and business information needs of our advertising clients to envision new advertising measurement products and tools. You will facilitate innovation on behalf of our customers through end-to-end delivery of measurement solutions leveraging experiments, machine learning and causal inference. You will partner with our engineering teams to develop and scale successful solutions to production. This role requires strong hands-on skills in terms of effectively working with data, coding, and MLOps. However, the ideal candidate will also bring strong interpersonal and communication skills to engage with cross-functional partners, as well as to stay connected to insights needs of account teams and advertisers. This is a truly exciting and versatile position in that it allows you to apply and develop your hands-on data modeling and coding skills, to work with other scientists on research in new measurement solutions while at the same time partner with cross-functional stakeholders to deliver product impact. Key job responsibilities As an Applied Scientist on the Advertising Incrementality Measurement team you will: - Create new analytical products from conception to prototyping and scaling the product end-to-end through to production. - Scope and define new business problems in the realm of advertising effectiveness. Use machine learning and experiments to develop effective and scalable solutions. - Partner closely with the Engineering team. - Partner with Economists, Data Scientists, and other Applied Scientists to conduct research on advertising effectiveness using machine learning and causal inference. Make findings available via white papers. - Act as a liaison to product teams to help productize new measurement solutions. About the team Advertising Incrementality Measurement combines experiments with econometric analysis and machine learning to provide rigorous causal measurement of advertising effectiveness to internal and external customers. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Boulder, CO, USA | New York, NY, USA | Santa Monica, CA, USA
US, CA, Santa Clara
Amazon launched the Generative AI Innovation Center (GAIIC) in Jun 2023 to help AWS customers accelerate the use of Generative AI to solve business and operational problems and promote innovation in their organization (https://press.aboutamazon.com/2023/6/aws-announces-generative-ai-innovation-center). GAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As an Applied Science Manager in GAIIC, you'll partner with technology and business teams to build new GenAI solutions that delight our customers. You will be responsible for directing a team of data/research/applied scientists, deep learning architects, and ML engineers to build generative AI models and pipelines, and deliver state-of-the-art solutions to customer’s business and mission problems. Your team will be working with terabytes of text, images, and other types of data to address real-world problems. The successful candidate will possess both technical and customer-facing skills that will allow you to be the technical “face” of AWS within our solution providers’ ecosystem/environment as well as directly to end customers. You will be able to drive discussions with senior technical and management personnel within customers and partners, as well as the technical background that enables them to interact with and give guidance to data/research/applied scientists and software developers. The ideal candidate will also have a demonstrated ability to think strategically about business, product, and technical issues. Finally, and of critical importance, the candidate will be an excellent technical team manager, someone who knows how to hire, develop, and retain high quality technical talent. About the team Here at AWS, it’s in our nature to learn and be curious about diverse perspectives. Our employee-led affinity groups foster a culture of inclusion that empower employees to feel proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. We have a career path for you no matter what stage you’re in when you start here. We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career- advancing resources here to help you develop into a better-rounded professional. We are open to hiring candidates to work out of one of the following locations: San Francisco, CA, USA | San Jose, CA, USA | Santa Clara, CA, USA
GB, London
Amazon Advertising is looking for a Data Scientist to join its brand new initiative that powers Amazon’s contextual advertising products. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies. The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety, Contextual data processing and classification. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are looking for a dynamic, innovative and accomplished Data Scientist to work on data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you an experienced user of sophisticated analytical techniques that can be applied to answer business questions and chart a sustainable vision? Are you exited by the prospect of communicating insights and recommendations to audiences of varying levels of technical sophistication? Above all, are you an innovator at heart and have a track record of resolving ambiguity to deliver result? As a data scientist, you help our data science team build cutting edge models and measurement solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, define metrics, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Define a long-term science vision for contextual-classification tech, driven fundamentally from the needs of our advertisers and publishers, translating that direction into specific plans for the science team. Interpret complex and interrelated data points and anecdotes to build and communicate this vision. * Collaborate with software engineering teams to Identify and implement elegant statistical and machine learning solutions * Oversee the design, development, and implementation of production level code that handles billions of ad requests. Own the full development cycle: idea, design, prototype, impact assessment, A/B testing (including interpretation of results) and production deployment. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. We are open to hiring candidates to work out of one of the following locations: London, GBR
JP, 13, Tokyo
We are seeking a Principal Economist to be the science leader in Amazon's customer growth and engagement. The wide remit covers Prime, delivery experiences, loyalty program (Amazon Points), and marketing. We look forward to partnering with you to advance our innovation on customers’ behalf. Amazon has a trailblazing track record of working with Ph.D. economists in the tech industry and offers a unique environment for economists to thrive. As an economist at Amazon, you will apply the frontier of econometric and economic methods to Amazon’s terabytes of data and intriguing customer problems. Your expertise in building reduced-form or structural causal inference models is exemplary in Amazon. Your strategic thinking in designing mechanisms and products influences how Amazon evolves. In this role, you will build ground-breaking, state-of-the-art econometric models to guide multi-billion-dollar investment decisions around the global Amazon marketplaces. You will own, execute, and expand a research roadmap that connects science, business, and engineering and contributes to Amazon's long term success. As one of the first economists outside North America/EU, you will make an outsized impact to our international marketplaces and pioneer in expanding Amazon’s economist community in Asia. The ideal candidate will be an experienced economist in empirical industrial organization, labour economics, or related structural/reduced-form causal inference fields. You are a self-starter who enjoys ambiguity in a fast-paced and ever-changing environment. You think big on the next game-changing opportunity but also dive deep into every detail that matters. You insist on the highest standards and are consistent in delivering results. Key job responsibilities - Work with Product, Finance, Data Science, and Data Engineering teams across the globe to deliver data-driven insights and products for regional and world-wide launches. - Innovate on how Amazon can leverage data analytics to better serve our customers through selection and pricing. - Contribute to building a strong data science community in Amazon Asia. We are open to hiring candidates to work out of one of the following locations: Tokyo, 13, JPN
DE, BE, Berlin
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Berlin, BE, DEU | Berlin, DEU
DE, BY, Munich
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Munich, BE, DEU | Munich, BY, DEU | Munich, DEU
IT, MI, Milan
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Milan, MI, ITA