Gari Clifford is the tenured chair of the Department of Biomedical Informatics at Emory University and a professor of biomedical engineering at Georgia Institute of Technology. Clifford, an Amazon Research Award recipient, is seen here speaking at Emory University.
Gari Clifford is the tenured chair of the Department of Biomedical Informatics at Emory University and a professor of biomedical engineering at Georgia Institute of Technology. He is seen here speaking at Emory University.
Steve Nowland/Emory University

Using machine learning to reduce costs, increase accuracy, and improve access in healthcare

Gari Clifford, the chair of the Department of Biomedical Informatics at Emory University and an Amazon Research Award recipient, wants to transform healthcare.

Gari Clifford is an academic who keeps his eyes fixed on real-world problems. His work in machine learning and signal processing is centered on improving some of the world's most burdensome and overlooked healthcare issues.

Clifford, now the tenured chair of the Department of Biomedical Informatics at Emory University and a professor of Biomedical Engineering at Georgia Institute of Technology, got his start in theoretical physics. But near the end of his master’s degree in the mid 90’s, his interests began to change. Conway’s Game of Life spurred him to think about ways to actually measure complex biological systems. Neural networks seemed like the most reasonable answer.

Finding a group working on neural networks in the ‘90s wasn’t easy. But once he made his way to Oxford in 1998, where he pursued a biomedical engineering PhD, Clifford found himself learning and working at the epicenter of British artificial intelligence. He gained steady experience — not just in building neural networks, but also in processing the data properly.

Oxford is also where Clifford “became profoundly interested in solving real-world problems.” At first, his research focused on using machine learning to predict cardiovascular events and critical care needs in hospitals. “That’s where all the data was,” he explains.

Transforming healthcare

After graduate school, Clifford started to get excited about new areas, particularly neuropsychiatry and maternal-fetal health.

“These were the biggest areas where I could have the biggest effect,” Clifford said. “And they’ll have the biggest effect in low- to middle-income countries, which is where I’m most interested in making a difference.”

Edge machine learning is going to transform healthcare.
Gari Clifford

He’s since held research and faculty positions at MIT, Oxford, and more recently Emory and Georgia Tech, the latter two because he wanted to be more embedded in healthcare systems. He describes his lab as “applying machine learning to whatever problems doctors come up with.” But, he explains, his “secret agenda,” is to see it change healthcare entirely. And for that to happen, edge machine learning — machine learning done in real time and on edge devices — is the key, he said.

“Edge machine learning is going to transform healthcare,” Clifford predicts. Rather than processing data in the cloud, edge machine learning relies on smart devices that use deep machine learning algorithms to process data locally and in real time.

The cloud is still essential to collect the initial data and train the model. Scaling this work requires a large vendor like AWS, Clifford said. Only once the ML model is trained on the cloud can it then be run off the edge sensors in real time. Edge sensors continue to update the model locally, and the data only needs to be pushed to the cloud periodically to prevent model drift and share local updates across all sensors. “The models are much smaller than the data,” Clifford said. “So not only does this reduce the energy and bandwidth needed, but it can preserve the privacy of the patient.”

Monitoring patient environments

Currently, the Clifford Lab — now in its twelfth year and supporting 12 graduate students and six postdoctoral scholars — is using edge machine learning to monitor patient environments. While today’s healthcare system doesn’t ignore a patient’s social support system, such as their interactions with friends, relatives or care providers, it also doesn’t record them, Clifford explained.

A complete picture of an individual’s support system could inform their care, he adds. For instance, decreased interaction with others, changes in their social circle or word choices, and decreased daily travel can all indicate a worsening of the patient’s condition. And they can be easily measured with a smartphone app running edge technology. This strategy is particularly important for the maternal and neuropsychiatry patient populations Clifford is working with, because “traditional healthcare is quite limited for these patient groups,” he said.

In 2018, Clifford received an Amazon Machine Learning Research Award for this work. The funding from Amazon allowed Clifford’s team to develop prototypes and partially funded two PhD students working on the project. They developed audio and Bluetooth algorithms that can run on Raspberry Pis to track who is going in and out of a patient’s hospital care environment. Using the audio and Bluetooth data as a diagnostic tool, the team hopes to understand whether a patient is degenerating quickly and what might be the cause.

“Based on the data, maybe we can come up with interventions — like a sleep intervention — that would reduce deterioration,” Clifford said.

“We started by developing [this technology] for in-hospital use because it allows for rapid development. The hospital is like an experimental environment that's easier to control. It’s much more difficult to do that in someone's home,” he added. But that’s the direction in which his team is moving.

Helping patients stay at home longer

One project Clifford’s group is working on uses the same Raspberry Pis with added sensors to monitor patients with a range of neuropsychiatry issues, including schizophrenia, Alzheimer’s, mild cognitive impairment, Parkinson’s disease, and postpartum depression.

Zifan Jiang, a PhD candidate in machine learning and graduate research assistant at Emory University, is seen here testing a device while wearing sterile gloves and a mask.
Zifan Jiang, a PhD candidate in machine learning and graduate research assistant at Emory University, is seen here testing a device in the Clifford Lab.
Courtesy of Gari Clifford

The strategy is to deploy Raspberry Pi devices in these patients’ home environments to monitor their interactions, movement and who comes and goes. Monitoring and managing the patient environment — such as how often they see a healthcare provider, their sleeping patterns, or how often they communicate with others — could help patients live in their homes longer (as opposed to hospitalization) and improve quality of life, Clifford said.

Most importantly for Clifford, the low cost of the tiny Raspberry Pi devices means this strategy is cost-effective. It can be rapidly scaled and deployed in middle- and low-income countries, places where mental and maternal health create an enormous burden but go largely unmanaged.

“It’s an exciting phase,” Clifford said. But many challenges are ahead, like acceptance of the technology. “As we expand sensors and tech, people are obviously concerned about privacy,” he noted. A 2019 study by Pega found that only 30% of respondents felt comfortable with businesses that use artificial intelligence to interact with them.

The importance of developing with inclusivity

As this technology develops, it’s critical to pull underrepresented groups into the process, Clifford explains. Artificial intelligence as an industry tends to be very homogeneous, he notes, and building trust will require that people from different cultures and backgrounds have a hand in its development.

Comfort levels with this technology are not likely to be any higher in the healthcare realm. “There is systemic distrust of this kind of technology, especially in disparity populations,” Clifford said. “And a history of the medical research community exploiting minority populations.”

Clifford’s lab invests significant time trying to build that trust.

In a collaboration with the Morehouse School of Medicine, the team built an app with Amazon Web Services (AWS), leveraging cloud-based computing and infrastructure resources to measure young African Americans’ exposure to different factors that affect cardiovascular disease, such as exercise, healthy food, and air pollution. Community engagement leaders in Atlanta facilitated the data collection, and several interested community members were trained and brought on to the development team. The aim is “to build the infrastructure for them and with them,” Clifford said. The app has just been made open source and “the hope is we have built a substrate the community could build companies out of.”

[The midwives] have fully taken ownership, and they don’t need us anymore. That was the best end result I’ve had with my research, ever.
Gari Clifford

In Guatemala, a midwife organization Clifford’s group has been collaborating with to predict maternal-fetal health outcomes has completely taken ownership of the technology. The strategy collects inputs like low-cost ultrasound data and pictures of daily blood pressure, and the data, once computed via AWS (Clifford’s team utilized AWS tools like Elastic Cloud Compute, Elastic Load Balancing, Relational Database Service, and GuardDuty, among others) can help predict fetal health.

Next up, Clifford is in search of funding to put that algorithm on the ultrasound device so the computing can be done locally. But in the meantime, the midwives have adopted the technology as the standard of care and reported that they hadn’t lost a single patient in the deployment area over last year.

“They have fully taken ownership, and they don’t need us anymore,” Clifford said. “That was the best end result I’ve had with my research, ever.”

Related content

ES, M, Madrid
Amazon's International Technology org in EU (EU INTech) is creating new ways for Amazon customers discovering Amazon catalog through new and innovative Customer experiences. Our vision is to provide the most relevant content and CX for their shopping mission. We are responsible for building the software and machine learning models to surface high quality and relevant content to the Amazon customers worldwide across the site. The team, mainly located in Madrid Technical Hub, London and Luxembourg, comprises Software Developer and ML Engineers, Applied Scientists, Product Managers, Technical Product Managers and UX Designers who are experts on several areas of ranking, computer vision, recommendations systems, Search as well as CX. Are you interested on how the experiences that fuel Catalog and Search are built to scale to customers WW? Are interesting on how we use state of the art AI to generate and provide the most relevant content? Key job responsibilities We are looking for Applied Scientists who are passionate to solve highly ambiguous and challenging problems at global scale. You will be responsible for major science challenges for our team, including working with text to image and image to text state of the art models to scale to enable new Customer Experiences WW. You will design, develop, deliver and support a variety of models in collaboration with a variety of roles and partner teams around the world. You will influence scientific direction and best practices and maintain quality on team deliverables. We are open to hiring candidates to work out of one of the following locations: Madrid, M, ESP
US, WA, Bellevue
Imagine being part of an agile team where your ideas have the potential to reach millions of customers. Picture working on cutting-edge, customer-facing solutions, where every team member is a critical voice in the decision making process. Envision being able to leverage the resources of a Fortune 500 company within the atmosphere of a start-up. Welcome to Amazon’s NCRC team. We solve complex problems in an ambiguous space, focusing on reducing return costs and improving the customer experience. We build solutions that are distributed on a large scale, positively impacting experiences for our customers and sellers. Come innovate with the NCRC team! The Net Cost of Refunds and Concessions (NCRC) team is looking for a Senior Manager Data Science to lead a team of economists, business intelligence engineers and business analysts who investigate business problems, develop insights and build models & algorithms that predict and quantify new opportunity. The team instigates and productionalizes nascent solutions around four pillars: outbound defects, inbound defects, yield optimization and returns reduction. These four pillars interact, resulting in impacts to our overall return rate, associated costs, and customer satisfaction. You may have seen some downstream impacts of our work including Amazon.com customer satisfaction badges on the website and app, new returns drop off optionality, and faster refunds for low cost items. In this role, you will set the science vision and direction for the team, collaborating with internal stakeholders across our returns and re-commerce teams to scale and advance science solutions. This role is based in Bellevue, WA Key job responsibilities * Single threaded leader responsible for setting and driving science strategy for the organization. * Lead and provide coaching to a team of Scientists, Economists, Business Intelligence Engineers and Business Analysts. * Partner with Engineering, Product and Machine Learning leaders to deliver insights and recommendations across NCRC initiatives. * Lead research and development of models and science products powering return cost reduction. * Educate and evangelize across internal teams on analytics, insights and measurement by writing whitepapers, knowledge documentation and delivering learning sessions. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
We are designing the future. If you are in quest of an iterative fast-paced environment, where you can drive innovation through scientific inquiry, and provide tangible benefit to hundreds of thousands of our associates worldwide, this is your opportunity. Come work on the Amazon Worldwide Fulfillment Design & Engineering Team! We are looking for an experienced and Research Scientist with background in Ergonomics and Industrial Human Factors, someone that is excited to work on complex real-world challenges for which a comprehensive scientific approach is necessary to drive solutions. Your investigations will define human factor / ergonomic thresholds resulting in design and implementation of safe and efficient workspaces and processes for our associates. Your role will entail assessment and design of manual material handling tasks throughout the entire Amazon network. You will identify fundamental questions pertaining to the human capabilities and tolerances in a myriad of work environments, and will initiate and lead studies that will drive decision making on an extreme scale. .You will provide definitive human factors/ ergonomics input and participate in design with every single design group in our network, including Amazon Robotics, Engineering R&D, and Operations Engineering. You will work closely with our Worldwide Health and Safety organization to gain feedback on designs and work tenaciously to continuously improve our associate’s experience. Key job responsibilities - Collaborating and designing work processes and workspaces that adhere to human factors / ergonomics standards worldwide. - Producing comprehensive and assessments of workstations and processes covering biomechanical, physiological, and psychophysical demands. - Effectively communicate your design rationale to multiple engineering and operations entities. - Identifying gaps in current human factors standards and guidelines, and lead comprehensive studies to redefine “industry best practices” based on solid scientific foundations. - Continuously strive to gain in-depth knowledge of your profession, as well as branch out to learn about intersecting fields, such as robotics and mechatronics. - Travelling to our various sites to perform thorough assessments and gain in-depth operational feedback, approximately 25%-50% of the time. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, NY, New York
Amazon Advertising exists at the intersection of marketing and e-commerce and offers advertisers a rich array of innovative advertising solutions across Amazon-owned and third party properties. We believe that advertising, when done well, can greatly enhance the value of the customer experience and generate a positive return on investment for our advertising partners. We are currently looking for a highly skilled and motivated Data Scientist to help scale our growing advertising business. The Data Scientist is a key member of the Global Marketing Insights team at Amazon Ads, working with marketing, product, retail and other Amazon business partners to analyze and improve advertisers’ performance on Amazon, in support of their marketing objectives. You will work with Amazon's unique data and translate it into high-quality and actionable insights and recommendations to improve the effectiveness of advertiser campaigns and unlock business opportunities. Day to day activities include analyzing advertiser behaviors to develop data-driven insights on what tactics and strategies lead to success. You will also build automated solutions to generate science driven insights at scale, that are distributed to our advertisers across channels. Basic qualifications - Bachelor's or Master's degree in Engineering, Statistics, Economics, or a related technical field - Proven experience in data analytics or data science roles - Proficiency with SQL and Python - Strong understanding of basic statistical techniques and methodologies such as distributions, hypothesis testing, regressions, experimentation, A/B Testing etc. - Excellent organizational, interpersonal, and communication skills (both written and verbal) - Ability to work cross-functionally and with technical and non-technical stakeholders Preferred qualifications - Understanding of advanced statistical techniques and methodologies such as causal inference, propensity score matching, machine learning etc. - Experience with developing and deploying production machine learning models, especially on cloud platforms - Experience building and managing data pipelines - Experience with digital advertising products, performance analytics , marketing and advertising campaigns - MBA, Master’s, or Doctoral degree in Economics, Engineering, Marketing, Statistics, Advertising, or related fields - Publication track record/writing experience (ex. published a paper in a technical journal or trade publication) About the team The Marketing Insights team is responsible for delivering science backed insights to millions of advertisers via our marketing messages. Our team is distributed across the globe and is building cutting edge data science to identify and communicate the impact of various advertising strategies for our products. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, CA, Santa Clara
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Generative AI team helps AWS customers accelerate the use of Generative AI to solve business and operational challenges and promote innovation in their organization. As an applied scientist, you are proficient in designing and developing advanced ML models to solve diverse challenges and opportunities. You will be working with terabytes of text, images, and other types of data to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for talented scientists capable of applying ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others. AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. Key job responsibilities The primary responsibilities of this role are to: Design, develop, and evaluate innovative ML models to solve diverse challenges and opportunities across industries Interact with customer directly to understand their business problems, and help them with defining and implementing scalable Generative AI solutions to solve them Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solutions About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. We are open to hiring candidates to work out of one of the following locations: San Francisco, CA, USA | Santa Clara, CA, USA
US, WA, Bellevue
Amazon.com Services, Inc. is looking for a motivated individual with strong analytical skills and practical experience to join our Modeling and Optimization team. We are hiring specialists into our scientific team with expertise in network and combinatorial optimization, simulation-based design, and/or control theory. Amazon is growing rapidly and because we are driven by faster delivery to customers, a more efficient supply chain network, and lower cost of operations, our main focus is in the development of analytical strategic models and automation tools fed by massive amounts of data. You will be responsible for building these models/tools that improve the economics of Amazon’s worldwide fulfillment networks in North America, Europe, and Japan, China, and India as Amazon increases the speed and decreases the cost to deliver products to customers. You will identify and evaluate opportunities to reduce variable costs by improving fulfillment center processes, transportation operations and scheduling, and the execution to operational plans. You will also improve the efficiency of capital investment by helping the fulfillment centers to improve storage utilization and the effective use of automation. Finally, you will help create the metrics to quantify improvements to the fulfillment costs (e.g., transportation and labor costs) resulting from the application of these optimization models and tools. The ideal candidate will have good communication skills with both technical and business people with ability to speak at a level appropriate for the audience. Key job responsibilities * Understand ambiguous business problems, model it in the simplest and most effective manner with limited guidance. * Use new or existing tools to support internal partner-teams and provide the best, science-based guidance. * Contribute to existing tools with highly disciplined coding practices. * Contribute to the growth of knowledge of our team and the scientific community with internal and external publications or presentations. About the team * At the Modeling and Optimization (MOP) team, we use optimization, algorithm design, statistics, and machine learning to improve decision-making capabilities across WW Operations and Amazon Logistics. * We focus on transportation topology, labor and resource planning, routing science, visualization research, data science and development, and process optimization. * We create models to simulate, optimize, and control the fulfillment network with the objective of reducing cost while improving speed and reliability. * We support multiple business line, therefore maintain a comprehensive and objective view, coordinating solutions across organizational lines where possible. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI. This group is entrusted with developing core natural language processing, generative AI, deep learning and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. A day in the life Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. About the team The Amazon Web Services (AWS) Next Gen DevX (NGDE) team uses generative AI and foundation models to reimagine the experience of all builders on AWS. From the IDE to web-based tools and services, AI will help engineers work on large and small applications. We explore new technologies and find creative solutions. Curiosity and an explorative mindset can find a place here to impact the life of engineers around the world. If you are excited about this space and want to enlighten your peers with new capabilities, this is the team for you. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA