Gari Clifford is the tenured chair of the Department of Biomedical Informatics at Emory University and a professor of biomedical engineering at Georgia Institute of Technology. Clifford, an Amazon Research Award recipient, is seen here speaking at Emory University.
Gari Clifford is the tenured chair of the Department of Biomedical Informatics at Emory University and a professor of biomedical engineering at Georgia Institute of Technology. He is seen here speaking at Emory University.
Steve Nowland/Emory University

Using machine learning to reduce costs, increase accuracy, and improve access in healthcare

Gari Clifford, the chair of the Department of Biomedical Informatics at Emory University and an Amazon Research Award recipient, wants to transform healthcare.

Gari Clifford is an academic who keeps his eyes fixed on real-world problems. His work in machine learning and signal processing is centered on improving some of the world's most burdensome and overlooked healthcare issues.

Clifford, now the tenured chair of the Department of Biomedical Informatics at Emory University and a professor of Biomedical Engineering at Georgia Institute of Technology, got his start in theoretical physics. But near the end of his master’s degree in the mid 90’s, his interests began to change. Conway’s Game of Life spurred him to think about ways to actually measure complex biological systems. Neural networks seemed like the most reasonable answer.

Finding a group working on neural networks in the ‘90s wasn’t easy. But once he made his way to Oxford in 1998, where he pursued a biomedical engineering PhD, Clifford found himself learning and working at the epicenter of British artificial intelligence. He gained steady experience — not just in building neural networks, but also in processing the data properly.

Oxford is also where Clifford “became profoundly interested in solving real-world problems.” At first, his research focused on using machine learning to predict cardiovascular events and critical care needs in hospitals. “That’s where all the data was,” he explains.

Transforming healthcare

After graduate school, Clifford started to get excited about new areas, particularly neuropsychiatry and maternal-fetal health.

“These were the biggest areas where I could have the biggest effect,” Clifford said. “And they’ll have the biggest effect in low- to middle-income countries, which is where I’m most interested in making a difference.”

Edge machine learning is going to transform healthcare.
Gari Clifford

He’s since held research and faculty positions at MIT, Oxford, and more recently Emory and Georgia Tech, the latter two because he wanted to be more embedded in healthcare systems. He describes his lab as “applying machine learning to whatever problems doctors come up with.” But, he explains, his “secret agenda,” is to see it change healthcare entirely. And for that to happen, edge machine learning — machine learning done in real time and on edge devices — is the key, he said.

“Edge machine learning is going to transform healthcare,” Clifford predicts. Rather than processing data in the cloud, edge machine learning relies on smart devices that use deep machine learning algorithms to process data locally and in real time.

The cloud is still essential to collect the initial data and train the model. Scaling this work requires a large vendor like AWS, Clifford said. Only once the ML model is trained on the cloud can it then be run off the edge sensors in real time. Edge sensors continue to update the model locally, and the data only needs to be pushed to the cloud periodically to prevent model drift and share local updates across all sensors. “The models are much smaller than the data,” Clifford said. “So not only does this reduce the energy and bandwidth needed, but it can preserve the privacy of the patient.”

Monitoring patient environments

Currently, the Clifford Lab — now in its twelfth year and supporting 12 graduate students and six postdoctoral scholars — is using edge machine learning to monitor patient environments. While today’s healthcare system doesn’t ignore a patient’s social support system, such as their interactions with friends, relatives or care providers, it also doesn’t record them, Clifford explained.

A complete picture of an individual’s support system could inform their care, he adds. For instance, decreased interaction with others, changes in their social circle or word choices, and decreased daily travel can all indicate a worsening of the patient’s condition. And they can be easily measured with a smartphone app running edge technology. This strategy is particularly important for the maternal and neuropsychiatry patient populations Clifford is working with, because “traditional healthcare is quite limited for these patient groups,” he said.

In 2018, Clifford received an Amazon Machine Learning Research Award for this work. The funding from Amazon allowed Clifford’s team to develop prototypes and partially funded two PhD students working on the project. They developed audio and Bluetooth algorithms that can run on Raspberry Pis to track who is going in and out of a patient’s hospital care environment. Using the audio and Bluetooth data as a diagnostic tool, the team hopes to understand whether a patient is degenerating quickly and what might be the cause.

“Based on the data, maybe we can come up with interventions — like a sleep intervention — that would reduce deterioration,” Clifford said.

“We started by developing [this technology] for in-hospital use because it allows for rapid development. The hospital is like an experimental environment that's easier to control. It’s much more difficult to do that in someone's home,” he added. But that’s the direction in which his team is moving.

Helping patients stay at home longer

One project Clifford’s group is working on uses the same Raspberry Pis with added sensors to monitor patients with a range of neuropsychiatry issues, including schizophrenia, Alzheimer’s, mild cognitive impairment, Parkinson’s disease, and postpartum depression.

Zifan Jiang, a PhD candidate in machine learning and graduate research assistant at Emory University, is seen here testing a device while wearing sterile gloves and a mask.
Zifan Jiang, a PhD candidate in machine learning and graduate research assistant at Emory University, is seen here testing a device in the Clifford Lab.
Courtesy of Gari Clifford

The strategy is to deploy Raspberry Pi devices in these patients’ home environments to monitor their interactions, movement and who comes and goes. Monitoring and managing the patient environment — such as how often they see a healthcare provider, their sleeping patterns, or how often they communicate with others — could help patients live in their homes longer (as opposed to hospitalization) and improve quality of life, Clifford said.

Most importantly for Clifford, the low cost of the tiny Raspberry Pi devices means this strategy is cost-effective. It can be rapidly scaled and deployed in middle- and low-income countries, places where mental and maternal health create an enormous burden but go largely unmanaged.

“It’s an exciting phase,” Clifford said. But many challenges are ahead, like acceptance of the technology. “As we expand sensors and tech, people are obviously concerned about privacy,” he noted. A 2019 study by Pega found that only 30% of respondents felt comfortable with businesses that use artificial intelligence to interact with them.

The importance of developing with inclusivity

As this technology develops, it’s critical to pull underrepresented groups into the process, Clifford explains. Artificial intelligence as an industry tends to be very homogeneous, he notes, and building trust will require that people from different cultures and backgrounds have a hand in its development.

Comfort levels with this technology are not likely to be any higher in the healthcare realm. “There is systemic distrust of this kind of technology, especially in disparity populations,” Clifford said. “And a history of the medical research community exploiting minority populations.”

Clifford’s lab invests significant time trying to build that trust.

In a collaboration with the Morehouse School of Medicine, the team built an app with Amazon Web Services (AWS), leveraging cloud-based computing and infrastructure resources to measure young African Americans’ exposure to different factors that affect cardiovascular disease, such as exercise, healthy food, and air pollution. Community engagement leaders in Atlanta facilitated the data collection, and several interested community members were trained and brought on to the development team. The aim is “to build the infrastructure for them and with them,” Clifford said. The app has just been made open source and “the hope is we have built a substrate the community could build companies out of.”

[The midwives] have fully taken ownership, and they don’t need us anymore. That was the best end result I’ve had with my research, ever.
Gari Clifford

In Guatemala, a midwife organization Clifford’s group has been collaborating with to predict maternal-fetal health outcomes has completely taken ownership of the technology. The strategy collects inputs like low-cost ultrasound data and pictures of daily blood pressure, and the data, once computed via AWS (Clifford’s team utilized AWS tools like Elastic Cloud Compute, Elastic Load Balancing, Relational Database Service, and GuardDuty, among others) can help predict fetal health.

Next up, Clifford is in search of funding to put that algorithm on the ultrasound device so the computing can be done locally. But in the meantime, the midwives have adopted the technology as the standard of care and reported that they hadn’t lost a single patient in the deployment area over last year.

“They have fully taken ownership, and they don’t need us anymore,” Clifford said. “That was the best end result I’ve had with my research, ever.”

Related content

IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
IL, Haifa
We’re looking for a Principal Applied Scientist in the Personalization team with experience in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problem Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
DE, Aachen
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Join us at the forefront of applied robotics and AI, and be a part of the team that's reshaping the future of intelligent systems. Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers like Pieter Abbeel, Rocky Duan, and Peter Chen to lead key initiatives in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, scence understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between cutting-edge research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives in robotics foundation models, driving breakthrough approaches through hands-on research and development in areas like open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Guide technical direction for specific research initiatives, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with engineering teams to optimize and scale models for real-world applications - Influence technical decisions and implementation strategies within your area of focus A day in the life - Develop and implement novel foundation model architectures, working hands-on with our extensive compute infrastructure - Guide fellow scientists in solving complex technical challenges, from sim2real transfer to efficient multi-task learning - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster - Mentor team members while maintaining significant hands-on contribution to technical solutions Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team, led by pioneering AI researchers Pieter Abbeel, Rocky Duan, and Peter Chen, is building the future of intelligent robotics through groundbreaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to drive customer awareness for Amazon’s own brands and help customers discover products they love. Private Brands Discovery is an interdisciplinary team of Scientists and Engineers, who incubate and build disruptive solutions using cutting-edge technology to solve some of the toughest science problems at Amazon. To this end, the team employs methods from Natural Language Processing, Deep learning, multi-armed bandits and reinforcement learning, Bayesian Optimization, causal and statistical inference, and econometrics to drive discovery across the customer journey. Our solutions are crucial for the success of Amazon’s own brands and serve as a beacon for discovery solutions across Amazon. This is a high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and engineers. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.. With a focus on bias for action, this individual will be able to work equally well with Science, Engineering, Economics and business teams. Key job responsibilities - 5+ yrs of relevant, broad research experience after PhD degree or equivalent. - Advanced expertise and knowledge of applying observational causal interference methods - Strong background in statistics methodology, applications to business problems, and/or big data. - Ability to work in a fast-paced business environment. - Strong research track record. - Effective verbal and written communications skills with both economists and non-economist audiences.
US, WA, Seattle
The AWS Marketplace & Partner Services Science team is hiring an Applied Scientist to develop science products that support AWS initiatives to grow AWS Partners. The team is seeking candidates with strong background in machine learning and engineering, creativity, curiosity, and great business judgment. As an applied scientist on the team, you will work on targeting and lead prioritization related AI/ML products, recommendation systems, and deliver them into the production ecosystem. You are comfortable with ambiguity and have a deep understanding of ML algorithms and an analytical mindset. You are capable of summarizing complex data and models through clear visual and written explanations. You thrive in a collaborative environment and are passionate about learning. Key job responsibilities - Work with scientists, product managers and engineers to deliver high-quality science products - Experiment with large amounts of data to deliver the best possible science solutions - Design, build, and deploy innovative ML solutions to impact AWS Co-Sell initiatives About the team The AWS Marketplace & Partner Services team is the center of Analytics, Insights, and Science supporting the AWS Specialist Partner Organization on its mission to provide customers with an outstanding experience while working with AWS partners. The Science team supports science models and recommendation systems that are deployed directly to AWS Customers, AWS partners, and internal AWS Sellers.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Device organization where our mission is to create a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful science leader in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have solid technical background and extensive experience in leading projects and technical teams. The ideal candidate would also have experiences in developing natural language processing systems (particularly LLM based systems) for industry applications, enjoy operating in highly dynamic and ambiguous environments, be self-motivated to take on challenging problems to deliver customer impact. In this role, you will lead a team of scientists to fine tune and evaluate the LLM to improve instruction following capabilities, align human preferences with RLHF, enhance conversation responses with RAG techniques, and various other. You will use your management, research and production experience to develop the team, communicate direction and achieve the results in a fast-paced environment. You will have significant influence on our overall LLM strategy by helping define product features, drive the system architecture, and spearhead the best practices that enable a quality product. Key job responsibilities Key job responsibilities Build a strong and coherent team with particular focus on sciences and innovations in LLM technologies for conversation AI applications Own the strategic planning and project management for technical initiatives in your team with the help of technical leads. Provide technical and scientific guidance to your team members. Collaborate effectively with multiple cross-organizational teams. Communicate effectively with senior management as well as with colleagues from science, engineering and business backgrounds. Support the career development of your team members.