Amazon Science Forecasting Algorithm.png

The history of Amazon’s forecasting algorithm

The story of a decade-plus long journey toward a unified forecasting model.

When a customer visits Amazon, there is an almost inherent expectation that the item they are searching for will be in stock. And that expectation is understandable — Amazon sells more than 400 million products in over 185 countries.

However, the sheer volume of products makes it cost-prohibitive to maintain surplus inventory levels for every product.

Recommended reads
Automated method that uses gradients to identify salient layers prevents regression on previously seen data.

Historical patterns can be leveraged to make decisions on inventory levels for products with predictable consumption patterns — think household staples like laundry detergent or trash bags. However, most products exhibit a variability in demand due to factors that are beyond Amazon’s control.

Take the example of a book like Michelle Obama’s Becoming, or the recent proliferation of sweatsuits, which emerged as both a comfortable and a fashion-forward clothing option during 2020. It’s difficult to account for the steep spike in sales caused by a publicity tour featuring Oprah Winfrey and nearly impossible to foresee the effect COVID-19 would have on, among other things, stay-at-home clothing trends.

Today, Amazon’s forecasting team has drawn on advances in fields like deep learning, image recognition, and natural-language processing to develop a forecasting model that makes accurate decisions across diverse product categories. Arriving at this unified forecasting model hasn’t been the result of one “eureka” moment. Rather, it has been a decade-plus-long journey.

Hands-off-the-wheel automation: Amazon’s supply chain optimization

“When we started the forecasting team at Amazon, we had ten people and no scientists,” says Ping Xu, forecasting science director within Amazon’s Supply Chain Optimization Technologies (SCOT) organization. “Today, we have close to 200 people on our team. The focus on scientific and technological innovation has been key in allowing us to draw an accurate estimate of the immense variability in future demand and make sure that customers are able to fulfill their shopping needs on Amazon.”

In the beginning: A patchwork of models

Kari Torkkola, senior principal research scientist, has played a key role in driving the evolution of Amazon’s forecasting systems in his 12 years at the company.

“When I joined Amazon, the company relied on traditional time series models for forecasting,” says Torkkola.

Clockwise from top left, Ping Xu, forecasting science director; Kari Torkkola, senior principal research scientist; Dhruv Madeka, principal applied scientist; and Ruofeng Wen, senior applied scientist
Clockwise from top left, Ping Xu, forecasting science director; Kari Torkkola, senior principal research scientist; Dhruv Madeka, principal applied scientist; and Ruofeng Wen, senior applied scientist

Time series forecasting is a statistical technique that uses historical values and associated patterns to predict future activity. In 2008, Amazon’s forecasting system used standard textbook time series forecasting methods to make predictions.

The system produced accurate forecasts in scenarios where the time series was predictable and stationary. However, it was unable to produce accurate forecasts for situations such as new products that had no prior history or products with highly seasonal sale patterns. Amazon’s forecasting teams had to develop new methods to account for each of these scenarios.

The system was incredibly hard to maintain. It gradually became clear that we needed to work towards developing a unified forecasting model.
Kari Torkkola

So they set about developing an add-on component to model seasonal patterns in products such as winter jackets. Another specialized component solved for the effects of price elasticity, where products see spikes in demand due to price drops, while yet another component called the Distribution Engine modeled past errors to produce estimates of forecast distributions on top of point forecasts.

“There were multiple components, all of which needed our attention,” says Torkkola. “The system was incredibly hard to maintain. It gradually became clear that we needed to work towards developing a unified forecasting model.”

Enter the random forest

If the number of components made maintaining the forecasting system laborious, routing special forecasting cases or even product groups to specialized models, which involved encoding expert knowledge, complicated matters even further.

Then Torkkola had a deceptively simple insight as he began working toward a unified forecasting model. “There are products across multiple categories that behave the same way,” he said.

Recommended reads
Representing facts using knowledge triplets rather than natural language enables finer-grained judgments.

For example, there is clear delineation between new products and products with an established history. The forecast for a new video game or laptop can be generated, in part, from how similar products behaved when they had launched in the past.

Torkkola extracted a set of features from information such as demand, sales, product category, and page views. He used these features to train a random forest model. Random forests are commonly used machine learning algorithms that comprise  a number of decision trees. The outputs of the decision trees are bundled together to provide a more stable and accurate prediction.

“By pooling everything together in one model, we gained statistical strength across multiple categories,” Torkkola says.

At the time, Amazon’s base forecasting system produced point forecasts to predict future demand — a single number that conveys information about the future demand. However, full forecast distributions or a set of quantiles of the distribution are necessary when it comes to make informed forecasting decisions on inventory levels. The Distribution Engine, which was another add-on to the base system, was producing poorly calibrated distributions.

Related content
Learning the complete quantile function, which maps probabilities to variable values, rather than building separate models for each quantile level, enables better optimization of resource trade-offs.

Torkkola wrote an initial implementation of the random-forest approach to output quantiles of forecast distributions. This was rewritten in a new incarnation called a Sparse Quantile Random Forest (SQRF). That implementation allowed a single forecasting system to make forecasts for different product lines where each may have had different features, thus each of those features seems very “sparse”. SQRF could also scale to millions of products and represented a step change for Amazon to produce forecasts at scale.

However, the system suffered from a serious drawback. It still required the team to manually engineer features for the model — in other words, the system needed humans to define the input variables that would provide the best possible output.

That was all set to change in 2013, when the field of deep learning went into overdrive.

Deep learning produces the unified model

“In 2013, there was a lot of excitement in the machine learning community around deep learning,” Torkkola says. “There were significant advances in the field of image recognition. In addition, tensor frameworks such as THEANO, developed by the University of Montreal, were allowing developers to build deep-learning models on the fly. Currently popular frameworks such as TensorFlow were not yet available.”

Neural networks were a tantalizing prospect for Amazon’s forecasting team. In theory, neural networks could do away with the need to manually engineer features. The network could ingest raw data and learn the most relevant implicit features needed to produce a forecast without human input.

With the help of interns hired over the summers of 2014 and 2015, Torkkola experimented with both feed-forward and recurrent neural networks (RNNs). In feed-forward networks, the connections between nodes do not form a cycle; the opposite is true with RNNs. The team began by developing a RNN to produce a point forecast. Over the next summer, another intern developed a model to produce a distribution forecast. However, these early iterations did not outperform SQRF, the existing production system.

Related content
How Amazon’s scientists developed a first-of-its-kind multi-echelon system for inventory buying and placement.

Amazon’s forecasting team went back to the drawing board and had another insight, one that would prove crucial in the journey towards developing a unified forecasting model.

“We trained the network on minimizing quantile loss over multiple forecast horizons,” Torkkola says. Quantile loss is among the most important metrics used in forecasting systems. It is appropriate when under- and overprediction errors have different costs, such as in inventory buying.

“When you train a system on the same metric that you are interested in evaluating, the system performs better,” Torkkola says. The new feed-forward network delivered a significant improvement in forecasting relative to SQRF.

This was the breakthrough that the team had been working towards: the team could finally start retiring the plethora of old models and utilize a unified forecasting model that would produce accurate forecasts for multiple scenarios, forecasts, and categories. The result was a 15-fold improvement in forecast accuracy and great simplification of the entire system.

At last, no feature engineering!

While the feed-forward network had delivered an impressive improvement in performance, the system still continued using the same hand-engineered features SQRF had used. "There was no way to tell how far those features were from optimal," Ruofeng Wen, a senior applied scientist who formerly worked as a forecasting scientist and joined the project in 2016, pointed out. “Some were redundant, and some were useless.”

Related content
Method uses metric learning to determine whether images depict the same product.

The team set out to develop a model that would remove the need to manually engineer domain-specific features, thus being applicable to any general forecasting problem. The breakthrough approach, known as MQ-RNN/CNN, was published in a 2018 paper titled "A Multi-Horizon Quantile Recurrent Forecaster". It built off the recent advances made in recurrent networks (RNN) and convolutional networks (CNNs).

CNNs are frequently used in image recognition due to their ability to scan an image, determine the saliency of various parts of that image, and make decisions about the relative importance of those facets. RNNs are usually used in a different domain, parsing semantics and sentiments from texts. Crucially, both RNNs and CNNs are able to extract the most relevant features without manual engineering. “After all, forecasting is based on past sequential patterns,” Wen said, “and RNNs/CNNs are pretty good at capturing them.”

Leveraging the new general approach allowed Amazon to forecast the demand of any fast-moving products with a single model structure. This outperformed a dozen legacy systems designed for difference product lines, since the model was smart enough to learn business-specific demand patterns all by itself. However, for a system to make accurate predictions about the future, it has to have a detailed understanding of the errors it has made in the past. The architecture of the Multi-Horizon Quantile Recurrent Forecaster had few mechanisms that would enable it to ingest knowledge about past errors.

Amazon’s forecasting team worked through this limitation by turning to the latest advances in natural-language processing (NLP).

Leaning on natural language processing

Dhruv Madeka, a principal applied scientist who had conducted innovative work in developing election forecasting systems at Bloomberg, was among the scientists who had joined Amazon’s forecasting team in 2017.

“Sentences are a sequence of words,” Madeka says. “The attention mechanisms in many NLP models look at a sequence of words and determine which other parts of the sentence are important for a given context and task. By incorporating these context-aware mechanisms, we now had a way to make our forecasting system pay attention to its history and gain an understanding of the errors it had made in the past.”

Amazon’s forecasting team honed in on the transformer architectures that were shaking up the world of NLP. Their new approach, which used decoder-encoder attention mechanisms for context alignment, was outlined in the paper "MQTransformer: Multi-Horizon Forecasts with Context Dependent and Feedback-Aware Attention", published in December 2020. The decoder-encoder attention mechanisms meant that the system could study its own history to improve forecasting accuracy and decrease volatility.

With MQ Transformer, Amazon now has a unified forecasting model able to make even more accurate predictions across the company’s vast catalogue of products.

Today, the team is developing deep-reinforcement-learning models that will enable Amazon to ensure that the accuracy improvements in forecasts translate directly into cost savings, resulting in lower costs for customers. To design a system that optimizes directly for savings — as opposed to inventory levels — the forecasting team is drawing on cutting-edge research from fields such as deep reinforcement learning.

“Amazon is an exceptional place for a scientist because of the focus on innovation grounded on making a real impact,” says Xu. “Thinking big is more than having a bold vision. It involves planting seeds, growing it continuously by failing fast, and doubling down on scaling once the evidence of success becomes apparent.”

Related content

US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Creative X team within Amazon Advertising time aims to democratize access to high-quality creatives (audio, images, videos, text) by building AI-driven solutions for advertisers. To accomplish this, we are investing in understanding how best users can leverage Generative AI methods such as latent-diffusion models, large language models (LLM), generative audio (music and speech synthesis), computer vision (CV), reinforced learning (RL) and related. As an Applied Scientist you will be part of a close-knit team of other applied scientists and product managers, UX and engineers who are highly collaborative and at the top of their respective fields. We are looking for talented Applied Scientists who are adept at a variety of skills, especially at the development and use of multi-modal Generative AI and can use state-of-the-art generative music and audio, computer vision, latent diffusion or related foundational models that will accelerate our plans to generate high-quality creatives on behalf of advertisers. Every member of the team is expected to build customer (advertiser) facing features, contribute to the collaborative spirit within the team, publish, patent, and bring SOTA research to raise the bar within the team. As an Applied Scientist on this team, you will: - Drive the invention and development of novel multi-modal agentic architectures and models for the use of Generative AI methods in advertising. - Work closely and integrate end-to-end proof-of-concept Machine Learning projects that have a high degree of ambiguity, scale and complexity. - Build interface-oriented systems that use Machine Learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Curate relevant multi-modal datasets. - Perform hands-on analysis and modeling of experiments with human-in-the-loop that eg increase traffic monetization and merchandise sales, without compromising the shopper experience. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Mentor and help recruit Applied Scientists to the team. - Present results and explain methods to senior leadership. - Willingness to publish research at internal and external top scientific venues. - Write and pursue IP submissions. Key job responsibilities This role is focused on developing new multi-modal Generative AI methods to augment generative imagery and videos. You will develop new multi-modal paradigms, models, datasets and agentic architectures that will be at the core of advertising-facing tools that we are launching. You may also work on development of ML and GenAI models suitable for advertising. You will conduct literature reviews to stay on the SOTA of the field. You will regularly engage with product managers, UX designers and engineers who will partner with you to productize your work. For reference see our products: Enhanced Video Generator, Creative Agent and Creative Studio. A day in the life On a day-to-day basis, you will be doing your independent research and work to develop models, you will participate in sprint planning, collaborative sessions with your peers, and demo new models and share results with peers, other partner teams and leadership. About the team The team is a dynamic team of applied scientists, UX researchers, engineers and product leaders. We reside in the Creative X organization, which focuses on creating products for advertisers that will improve the quality of the creatives within Amazon Ads. We are open to hiring candidates to work out of one of the following locations: UK (London), USA (Seattle).
US, WA, Bellevue
The Amazon Fulfillment Technologies (AFT) Science team is seeking an exceptional Applied Scientist with strong operations research and optimization expertise to develop production solutions for one of the most complex systems in the world: Amazon's Fulfillment Network. At AFT Science, we design, build, and deploy optimization, statistics, machine learning, and GenAI/LLM solutions that power production systems running across Amazon Fulfillment Centers worldwide. We tackle a wide range of challenges throughout the network, including labor planning and staffing, pick scheduling, stow guidance, and capacity risk management. Our mission is to develop innovative, scalable, and reliable science-driven production solutions that exceed the published state of the art, enabling systems to run optimally and continuously (from every few minutes to every few hours) across our large-scale network. Key job responsibilities As an Applied Scientist, you will collaborate with scientists, software engineers, product managers, and operations leaders to develop optimization-driven solutions that directly impact process efficiency and associate experience in the fulfillment network. Your key responsibilities include: - Develop deep understanding and domain knowledge of operational processes, system architecture, and business requirements - Dive deep into data and code to identify opportunities for continuous improvement and disruptive new approaches - Design and develop scalable mathematical models for production systems to derive optimal or near-optimal solutions for existing and emerging challenges - Create prototypes and simulations for agile experimentation of proposed solutions - Advocate for technical solutions with business stakeholders, engineering teams, and senior leadership - Partner with software engineers to integrate prototypes into production systems - Design and execute experiments to test new or incremental solutions launched in production - Build and monitor metrics to track solution performance and business impact About the team Amazon Fulfillment Technology (AFT) designs, develops, and operates end-to-end fulfillment technology solutions for all Amazon Fulfillment Centers (FCs). We harmonize the physical and virtual worlds so Amazon customers can get what they want, when they want it. The AFT Science team brings expertise in operations research, optimization, statistics, machine learning, and GenAI/LLM, combined with deep domain knowledge of operational processes within FCs and their unique challenges. We prioritize advancements that support AFT tech teams and focus areas rather than specific fields of research or individual business partners. We influence each stage of innovation from inception to deployment, which includes both developing novel solutions and improving existing approaches. Our production systems rely on a diverse set of technologies, and our teams invest in multiple specialties as the needs of each focus area evolve.
US, WA, Bellevue
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Sr. Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Ideal candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences
US, CA, Sunnyvale
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. We leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. As an Applied Scientist, you will develop and improve machine learning systems that help robots perceive, reason, and act in real-world environments. You will leverage state-of-the-art models (open source and internal research), evaluate them on representative tasks, and adapt/optimize them to meet robustness, safety, and performance needs. You will invent new algorithms where gaps exist. You’ll collaborate closely with research, controls, hardware, and product-facing teams, and your outputs will be used by downstream teams to further customize and deploy on specific robot embodiments. Key job responsibilities - Leverage state-of-the-art models for targeted tasks, environments, and robot embodiments through fine-tuning and optimization. - Execute rapid, rigorous experimentation with reproducible results and solid engineering practices, closing the gap between sim and real environments. - Build and run capability evaluations/benchmarks to clearly profile performance, generalization, and failure modes. - Contribute to the data and training workflow: collection/curation, dataset quality/provenance, and repeatable training recipes. - Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
US, NY, New York
Advertising at Amazon is growing incredibly fast and we are responsible for defining and delivering a collection of advertising products that drive discovery and sales. Amazon Business Ads is equally growing fast ($XXXMs to $XBs) and owns engineering and science for the AB WW ad experience. We build business-to-business (“B2B”) specific ad solutions distributed across retail and ad systems for shopper and advertiser experiences. Some include new ad placements or widgets, creatives, sourcing techniques, ad campaign management capabilities and much more! We consider unique AB qualities which are differentiated from the consumer experience such as varying shopper role types, purchasing complexities based on business size and industry (eg education vs healthcare), AB specific features (eg business discounts, buying policies to restrict and prefer products), and AB buyer behaviors (eg buying in bulk). We are seeking a scientific leader who can drive innovation in complex problem areas and new business initiatives. The ideal candidate will: Technical & Research Requirements: * Demonstrate fluency in Python, R, Matlab or other statistical languages and familiarity with deep learning frameworks like PyTorch, TensorFlow * Lead end-to-end solution development from research to prototyping and experimentation * Write and deploy significant parts of scientifically novel software solutions into production Leadership & Influence: * Drive team's scientific agenda by proposing new initiatives and securing management buy-in including PM, SDM * Mentor colleagues and contribute to their professional development * Build consensus on large projects and influence decisions across different teams in Ads Key Leadership Principles: * Dive Deep: Uncover non-obvious insights in data * Deliver Results: Create solutions aligned with customer and product needs * Learn and Be Curious: Demonstrate self-driven desire to explore new research areas * Earn Trust: Build relationships with stakeholders through understanding business needs
US, WA, Seattle
We are looking for an exceptional applied scientist to join the AWS Applied AI Life Sciences organization. You will invent, implement, and deploy state of the art machine learning algorithms and intelligent AI systems to solve complex problems in healthcare and life sciences area, making a meaningful impact on patient lives. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities - Design, develop, and deploy novel Agentic systems and ML solutions for complex healthcare and life sciences challenges - Navigate ambiguity and create clarity in early-stage product development - Collaborate with product managers, engineers, and domain experts to transform research into production-quality features - Mentor junior scientists and participate in tactical and strategic planning A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. About the team We are a multidisciplinary team of product managers, engineers, scientists, and domain experts working at the intersection of AI/ML and healthcare. We leverage AWS's expertise in secure, scalable cloud computing and applied AI to solve complex challenges in healthcare and life sciences. Our team values customer obsession, technical excellence, innovation, and a commitment to improving patient outcomes through technology.
US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Demand Utilization team with Sponsored Products and Brands owns finding the appropriate ads to surface to customers when they search for products on Amazon. We strive to understand our customers’ intent and identify relevant ads which enable them to discover new and alternate products. This also enables sellers on Amazon to showcase their products to customers, which may at times be buried deeper in the search results. Our systems and algorithms operate on one of the world's largest product catalogs, matching shoppers with products - with a high relevance bar and strict latency constraints. We are a team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience, but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term-growth. We are looking for an Applied Scientist II, with a strong background in Machine Learning and Generative AI to optimize serving ads on billions of product pages. The solutions you create would drive step increases in coverage of sponsored ads across the retail website and ensure relevant ads are served to Amazon's customers. You will directly impact our customers' shopping experience while helping our sellers get the maximum ROI from advertising on Amazon. You will be expected to demonstrate strong ownership and should be curious to learn and leverage the rich textual, image, and other contextual signals. This role will challenge you to utilize innovative machine learning techniques in the domain of predictive modeling, natural language processing (NLP), deep learning, reinforcement learning, query understanding, vector search, image recognition, and multi-modal AI to deliver significant impact for the business. In addition, you will be at the forefront of leveraging Generative AI (GenAI) technologies, including Large Language Models (LLMs) and foundation models, to drive advanced language understanding, creative ad content generation, and retrieval-augmented generation (RAG). You will also design and build agentic AI systems capable of autonomous, multi-step reasoning, tool use, and chain-of-thought decision-making, while applying techniques such as prompt engineering, fine-tuning, RLHF (Reinforcement Learning from Human Feedback), and embedding-based retrieval to develop scalable, production-grade solutions. Ideal candidates will have hands-on experience fine-tuning, evaluating, and deploying LLMs at scale, along with a strong understanding of emerging GenAI paradigms including agentic workflows and responsible AI practices. You should be able to work cross-functionally across multiple stakeholders, synthesize the science needs of our business partners, develop models to solve business needs, and implement solutions in production. In addition to being a strongly motivated IC, you will also be responsible for mentoring junior scientists, guiding them to deliver high-impact products and services for Amazon customers and sellers, and fostering a culture of innovation around the latest advancements in Generative AI and LLM technologies. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE Key job responsibilities As an Applied Scientist II on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in deploying your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches.
US, WA, Bellevue
As a Principal Applied Scientist for Last Hundred Yards Automation, you will be at the forefront of developing AI and ML solutions that power our autonomous delivery robots. This role combines deep expertise in machine learning, computer vision, and robotics to solve complex challenges in real-world autonomous navigation, obstacle detection, and dynamic path planning. You will work closely with robotics engineers, software developers, and product teams to research, design, and implement sophisticated algorithms that enable safe and efficient last-yard delivery operations. This position requires a unique blend of theoretical knowledge and practical implementation skills, with a focus on transforming research concepts into production-ready solutions that can operate reliably in diverse real-world environments. Key job responsibilities The Principal Applied Scientist will lead the development and implementation of advanced AI/ML models for autonomous navigation, focusing on critical areas such as real-time object detection, semantic scene understanding, and predictive movement planning. You will be responsible for designing and conducting experiments, analyzing complex datasets, and developing novel algorithms to improve robot performance and reliability. The role involves collaborating with cross-functional teams to integrate ML solutions into the robotics platform, optimizing model performance for edge computing, and establishing metrics for continuous improvement. You will also mentor junior scientists, contribute to research publications, and stay current with latest developments in the field. Key activities include developing robust ML pipelines, implementing state-of-the-art deep learning architectures, and creating innovative solutions for challenging problems such as adverse weather navigation, multi-robot coordination, and human-robot interaction. Success in this role requires balancing research excellence with practical implementation, while maintaining a strong focus on safety and reliability in autonomous systems. About the team LMDA (Last Mile Delivery Automation) is a automation system designed to revolutionize the final phase of package delivery, focusing specifically on the last hundred yards from delivery vehicle to customer doorstep. The system integrates autonomous robots equipped with advanced AI/ML algorithms, real-time navigation capabilities, and smart obstacle avoidance technology to efficiently transport packages to their final destination. These robots are designed to navigate various terrains, including sidewalks, building entrances, and residential complexes, while adhering to local safety regulations and maintaining secure delivery protocols. LMDA incorporates cloud-based fleet management, real-time tracking, and dynamic route optimization to ensure seamless coordination between delivery vehicles and robots. The system features a user-friendly interface for both delivery personnel and customers, providing live tracking, delivery notifications, and interactive robot communication. As labor costs rise and delivery volumes increase, LMDA represents a scalable, cost-effective solution that addresses the growing challenges of last-mile delivery while significantly improving operational efficiency and customer satisfaction.
JP, 13, Tokyo
Are you a Graduate Student interested in machine learning, natural language processing, computer vision, automated reasoning, robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Key job responsibilities Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. A day in the life Come teach us a few things, and we’ll teach you a few things as we navigate the most customer-centric company on Earth.
US, NY, New York
At Amazon Selection and Catalog Systems (ASCS), our mission is to power the online buying experience for customers worldwide so they can find, discover, and buy any product they want. We innovate on behalf of our customers to ensure uniqueness and consistency of product identity and to infer relationships between products in Amazon Catalog to drive the selection gateway for the search and browse experiences on the website. We're solving a fundamental AI challenge: establishing product identity and relationships at unprecedented scale. Using Generative AI, Visual Language Models (VLMs), and multimodal reasoning, we determine what makes each product unique and how products relate to one another across Amazon's catalog. The scale is staggering: billions of products, petabytes of multimodal data, millions of sellers, dozens of languages, and infinite product diversity—from electronics to groceries to digital content. The research challenges are immense. GenAI and VLMs hold transformative promise for catalog understanding, but we operate where traditional methods fail: ambiguous problem spaces, incomplete and noisy data, inherent uncertainty, reasoning across both images and textual data, and explaining decisions at scale. Establishing product identities and groupings requires sophisticated models that reason across text, images, and structured data—while maintaining accuracy and trust for high-stakes business decisions affecting millions of customers daily. Amazon's Item and Relationship Platform group is looking for an innovative and customer-focused applied scientist to help us make the world's best product catalog even better. In this role, you will partner with technology and business leaders to build new state-of-the-art algorithms, models, and services to infer product-to-product relationships that matter to our customers. You will pioneer advanced GenAI solutions that power next-generation agentic shopping experiences, working in a collaborative environment where you can experiment with massive data from the world's largest product catalog, tackle problems at the frontier of AI research, rapidly implement and deploy your algorithmic ideas at scale, across millions of customers. Key job responsibilities * Formulate novel research problems at the intersection of GenAI, multimodal learning, and large-scale information retrieval—translating ambiguous business challenges into tractable scientific frameworks * Design and implement leading models leveraging VLMs, foundation models, and agentic architectures to solve product identity, relationship inference, and catalog understanding at billion-product scale * Pioneer explainable AI methodologies that balance model performance with scalability requirements for production systems impacting millions of daily customer decisions * Own end-to-end ML pipelines from research ideation to production deployment—processing petabytes of multimodal data with rigorous evaluation frameworks * Define research roadmaps aligned with business priorities, balancing foundational research with incremental product improvements * Mentor peer scientists and engineers on advanced ML techniques, experimental design, and scientific rigor—building organizational capability in GenAI and multimodal AI * Represent the team in the broader science community—publishing findings, delivering tech talks, and staying at the forefront of GenAI, VLM, and agentic system research