Amazon Science Forecasting Algorithm.png

The history of Amazon’s forecasting algorithm

The story of a decade-plus long journey toward a unified forecasting model.

When a customer visits Amazon, there is an almost inherent expectation that the item they are searching for will be in stock. And that expectation is understandable — Amazon sells more than 400 million products in over 185 countries.

However, the sheer volume of products makes it cost-prohibitive to maintain surplus inventory levels for every product.

Recommended reads
Automated method that uses gradients to identify salient layers prevents regression on previously seen data.

Historical patterns can be leveraged to make decisions on inventory levels for products with predictable consumption patterns — think household staples like laundry detergent or trash bags. However, most products exhibit a variability in demand due to factors that are beyond Amazon’s control.

Take the example of a book like Michelle Obama’s Becoming, or the recent proliferation of sweatsuits, which emerged as both a comfortable and a fashion-forward clothing option during 2020. It’s difficult to account for the steep spike in sales caused by a publicity tour featuring Oprah Winfrey and nearly impossible to foresee the effect COVID-19 would have on, among other things, stay-at-home clothing trends.

Today, Amazon’s forecasting team has drawn on advances in fields like deep learning, image recognition, and natural-language processing to develop a forecasting model that makes accurate decisions across diverse product categories. Arriving at this unified forecasting model hasn’t been the result of one “eureka” moment. Rather, it has been a decade-plus-long journey.

Hands-off-the-wheel automation: Amazon’s supply chain optimization

“When we started the forecasting team at Amazon, we had ten people and no scientists,” says Ping Xu, forecasting science director within Amazon’s Supply Chain Optimization Technologies (SCOT) organization. “Today, we have close to 200 people on our team. The focus on scientific and technological innovation has been key in allowing us to draw an accurate estimate of the immense variability in future demand and make sure that customers are able to fulfill their shopping needs on Amazon.”

In the beginning: A patchwork of models

Kari Torkkola, senior principal research scientist, has played a key role in driving the evolution of Amazon’s forecasting systems in his 12 years at the company.

“When I joined Amazon, the company relied on traditional time series models for forecasting,” says Torkkola.

Clockwise from top left, Ping Xu, forecasting science director; Kari Torkkola, senior principal research scientist; Dhruv Madeka, principal applied scientist; and Ruofeng Wen, senior applied scientist
Clockwise from top left, Ping Xu, forecasting science director; Kari Torkkola, senior principal research scientist; Dhruv Madeka, principal applied scientist; and Ruofeng Wen, senior applied scientist

Time series forecasting is a statistical technique that uses historical values and associated patterns to predict future activity. In 2008, Amazon’s forecasting system used standard textbook time series forecasting methods to make predictions.

The system produced accurate forecasts in scenarios where the time series was predictable and stationary. However, it was unable to produce accurate forecasts for situations such as new products that had no prior history or products with highly seasonal sale patterns. Amazon’s forecasting teams had to develop new methods to account for each of these scenarios.

The system was incredibly hard to maintain. It gradually became clear that we needed to work towards developing a unified forecasting model.
Kari Torkkola

So they set about developing an add-on component to model seasonal patterns in products such as winter jackets. Another specialized component solved for the effects of price elasticity, where products see spikes in demand due to price drops, while yet another component called the Distribution Engine modeled past errors to produce estimates of forecast distributions on top of point forecasts.

“There were multiple components, all of which needed our attention,” says Torkkola. “The system was incredibly hard to maintain. It gradually became clear that we needed to work towards developing a unified forecasting model.”

Enter the random forest

If the number of components made maintaining the forecasting system laborious, routing special forecasting cases or even product groups to specialized models, which involved encoding expert knowledge, complicated matters even further.

Then Torkkola had a deceptively simple insight as he began working toward a unified forecasting model. “There are products across multiple categories that behave the same way,” he said.

Recommended reads
Representing facts using knowledge triplets rather than natural language enables finer-grained judgments.

For example, there is clear delineation between new products and products with an established history. The forecast for a new video game or laptop can be generated, in part, from how similar products behaved when they had launched in the past.

Torkkola extracted a set of features from information such as demand, sales, product category, and page views. He used these features to train a random forest model. Random forests are commonly used machine learning algorithms that comprise  a number of decision trees. The outputs of the decision trees are bundled together to provide a more stable and accurate prediction.

“By pooling everything together in one model, we gained statistical strength across multiple categories,” Torkkola says.

At the time, Amazon’s base forecasting system produced point forecasts to predict future demand — a single number that conveys information about the future demand. However, full forecast distributions or a set of quantiles of the distribution are necessary when it comes to make informed forecasting decisions on inventory levels. The Distribution Engine, which was another add-on to the base system, was producing poorly calibrated distributions.

Related content
Learning the complete quantile function, which maps probabilities to variable values, rather than building separate models for each quantile level, enables better optimization of resource trade-offs.

Torkkola wrote an initial implementation of the random-forest approach to output quantiles of forecast distributions. This was rewritten in a new incarnation called a Sparse Quantile Random Forest (SQRF). That implementation allowed a single forecasting system to make forecasts for different product lines where each may have had different features, thus each of those features seems very “sparse”. SQRF could also scale to millions of products and represented a step change for Amazon to produce forecasts at scale.

However, the system suffered from a serious drawback. It still required the team to manually engineer features for the model — in other words, the system needed humans to define the input variables that would provide the best possible output.

That was all set to change in 2013, when the field of deep learning went into overdrive.

Deep learning produces the unified model

“In 2013, there was a lot of excitement in the machine learning community around deep learning,” Torkkola says. “There were significant advances in the field of image recognition. In addition, tensor frameworks such as THEANO, developed by the University of Montreal, were allowing developers to build deep-learning models on the fly. Currently popular frameworks such as TensorFlow were not yet available.”

Neural networks were a tantalizing prospect for Amazon’s forecasting team. In theory, neural networks could do away with the need to manually engineer features. The network could ingest raw data and learn the most relevant implicit features needed to produce a forecast without human input.

With the help of interns hired over the summers of 2014 and 2015, Torkkola experimented with both feed-forward and recurrent neural networks (RNNs). In feed-forward networks, the connections between nodes do not form a cycle; the opposite is true with RNNs. The team began by developing a RNN to produce a point forecast. Over the next summer, another intern developed a model to produce a distribution forecast. However, these early iterations did not outperform SQRF, the existing production system.

Related content
How Amazon’s scientists developed a first-of-its-kind multi-echelon system for inventory buying and placement.

Amazon’s forecasting team went back to the drawing board and had another insight, one that would prove crucial in the journey towards developing a unified forecasting model.

“We trained the network on minimizing quantile loss over multiple forecast horizons,” Torkkola says. Quantile loss is among the most important metrics used in forecasting systems. It is appropriate when under- and overprediction errors have different costs, such as in inventory buying.

“When you train a system on the same metric that you are interested in evaluating, the system performs better,” Torkkola says. The new feed-forward network delivered a significant improvement in forecasting relative to SQRF.

This was the breakthrough that the team had been working towards: the team could finally start retiring the plethora of old models and utilize a unified forecasting model that would produce accurate forecasts for multiple scenarios, forecasts, and categories. The result was a 15-fold improvement in forecast accuracy and great simplification of the entire system.

At last, no feature engineering!

While the feed-forward network had delivered an impressive improvement in performance, the system still continued using the same hand-engineered features SQRF had used. "There was no way to tell how far those features were from optimal," Ruofeng Wen, a senior applied scientist who formerly worked as a forecasting scientist and joined the project in 2016, pointed out. “Some were redundant, and some were useless.”

Related content
Method uses metric learning to determine whether images depict the same product.

The team set out to develop a model that would remove the need to manually engineer domain-specific features, thus being applicable to any general forecasting problem. The breakthrough approach, known as MQ-RNN/CNN, was published in a 2018 paper titled "A Multi-Horizon Quantile Recurrent Forecaster". It built off the recent advances made in recurrent networks (RNN) and convolutional networks (CNNs).

CNNs are frequently used in image recognition due to their ability to scan an image, determine the saliency of various parts of that image, and make decisions about the relative importance of those facets. RNNs are usually used in a different domain, parsing semantics and sentiments from texts. Crucially, both RNNs and CNNs are able to extract the most relevant features without manual engineering. “After all, forecasting is based on past sequential patterns,” Wen said, “and RNNs/CNNs are pretty good at capturing them.”

Leveraging the new general approach allowed Amazon to forecast the demand of any fast-moving products with a single model structure. This outperformed a dozen legacy systems designed for difference product lines, since the model was smart enough to learn business-specific demand patterns all by itself. However, for a system to make accurate predictions about the future, it has to have a detailed understanding of the errors it has made in the past. The architecture of the Multi-Horizon Quantile Recurrent Forecaster had few mechanisms that would enable it to ingest knowledge about past errors.

Amazon’s forecasting team worked through this limitation by turning to the latest advances in natural-language processing (NLP).

Leaning on natural language processing

Dhruv Madeka, a principal applied scientist who had conducted innovative work in developing election forecasting systems at Bloomberg, was among the scientists who had joined Amazon’s forecasting team in 2017.

“Sentences are a sequence of words,” Madeka says. “The attention mechanisms in many NLP models look at a sequence of words and determine which other parts of the sentence are important for a given context and task. By incorporating these context-aware mechanisms, we now had a way to make our forecasting system pay attention to its history and gain an understanding of the errors it had made in the past.”

Amazon’s forecasting team honed in on the transformer architectures that were shaking up the world of NLP. Their new approach, which used decoder-encoder attention mechanisms for context alignment, was outlined in the paper "MQTransformer: Multi-Horizon Forecasts with Context Dependent and Feedback-Aware Attention", published in December 2020. The decoder-encoder attention mechanisms meant that the system could study its own history to improve forecasting accuracy and decrease volatility.

With MQ Transformer, Amazon now has a unified forecasting model able to make even more accurate predictions across the company’s vast catalogue of products.

Today, the team is developing deep-reinforcement-learning models that will enable Amazon to ensure that the accuracy improvements in forecasts translate directly into cost savings, resulting in lower costs for customers. To design a system that optimizes directly for savings — as opposed to inventory levels — the forecasting team is drawing on cutting-edge research from fields such as deep reinforcement learning.

“Amazon is an exceptional place for a scientist because of the focus on innovation grounded on making a real impact,” says Xu. “Thinking big is more than having a bold vision. It involves planting seeds, growing it continuously by failing fast, and doubling down on scaling once the evidence of success becomes apparent.”

Related content

US, NY, New York
Are you a passionate Applied Scientist (AS) ready to shape the future of digital content creation? At Amazon, we're building Earth's most desired destination for creators to monetize their unique skills, inspire the next generation of customers, and help brands expand their reach. We build innovative products and experiences that drive growth for creators across Amazon's ecosystem. Our team owns the entire Creator product suite, ensuring a cohesive experience, optimizing compensation structures, and launching features that help creators achieve both monetary and non-monetary goals. Key job responsibilities As an AS on our team, you will: - Handle challenging problems that directly impact millions of creators and customers - Independently collect and analyze data - Develop and deliver scalable predictive models, using any necessary programming, machine learning, and statistical analysis software - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Participate in design and implementation across teams to contribute to initiatives and develop optimal solutions that benefit the creators organization The successful candidate is a self-starter, comfortable with a dynamic, fast-paced environment, and able to think big while paying careful attention to detail. You have deep knowledge of an area/multiple areas of science, with a track record of applying this knowledge to deliver science solutions in a business setting and a demonstrated ability to operate at scale. You excel in a culture of invention and collaboration.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Key job responsibilities You will contribute directly to AI agent development in an engineering management role: leading a software development team focused on our internal platform for acquiring agentic experience at large scale. You will help set direction, align the team’s goals with the broader lab, mentor team members, recruit great people, and stay technically involved. You will be hired as a Member of Technical Staff. About the team Our lab is a small, talent-dense team with the resources and scale of Amazon. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up!
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Automated Performance Evaluation (APE) team is a hybrid team of Applied Scientists and Software Development Engineers who develop, deploy and own end-to-end machine learning services for use in the HR and Recruiting functions at Amazon.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional early career research scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Key Job Responsibilities: • Understand and contribute to model compression techniques (quantization, pruning, distillation, etc.) while developing theoretical understanding of Information Theory and Deep Learning fundamentals • Work with senior researchers to optimize Gen AI models for edge platforms using Amazon's Neural Edge Engine • Study and apply first principles of Information Theory, Scientific Computing, and Non-Equilibrium Thermodynamics to model optimization problems • Assist in research projects involving custom Gen AI model development, aiming to improve SOTA under mentorship • Co-author research papers for top-tier conferences (NeurIPS, ICLR, MLSys) and present at internal research meetings • Collaborate with compiler engineers, Applied Scientists, and Hardware Architects while learning about production ML systems • Participate in reading groups and research discussions to build expertise in efficient AI and edge computing
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Principal Quantum Research Scientist. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of experimental quantum computing and a track record of original scientific contributions. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As principal research scientist you will be expected to lead new ideas and stay abreast of the field of experimental quantum computation. Key job responsibilities Key job responsibilities In this role, you will work on improvements in all components of SC qubits quantum hardware, from qubits and resonators to quantum-limited amplifiers. You will also work on their integration into multiqubit chips. This will require designing new experiments, collecting statistically significant data through automation, analyzing the results, and summarizing conclusions in written form. Finally, you will work with hardware engineers, material scientists, and circuit designers to advance the state of the art of SC qubits hardware. About the team About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Palo Alto
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Lead business, science and engineering strategy and roadmap for Sponsored Products Agentic Advertiser Guidance. - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, NY, New York
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.