The 10 most viewed blog posts of 2025

From quantum computing breakthroughs and foundation models for robotics to the evolution of Amazon Aurora and advances in agentic AI, these are the posts that captured readers' attention in 2025.

  1. Time series forecasting has undergone a transformation with the emergence of foundation models, moving beyond traditional statistical methods that extrapolate from single time series. Building on the success of the original Chronos models — which have been downloaded over 600 million times from Hugging Face — Amazon researchers introduce Chronos-2, designed to handle arbitrary forecasting tasks in a zero-shot manner through in-context learning (ICL).

    Chronos-2 pipeline
    The complete Chronos-2 pipeline. Input time series (targets and covariates) are first normalized using a robust scaling scheme, after which a time index and mask meta features are added. The resulting sequences are split into non-overlapping patches and mapped to high-dimensional embeddings via a residual network. The core transformer stack operates on these patch embeddings and produces multi-patch quantile outputs corresponding to the future patches masked out in the input. Each transformer block alternates between time and group attention layers: the time attention layer aggregates information across patches within a single time series, while the group attention layer aggregates information across all series within a group at each patch index. The figure illustrates two multivariate time series with one known covariate each, with corresponding groups highlighted in blue and red. This example is for illustration purposes only; Chronos-2 supports arbitrary numbers of targets and optional covariates.

    Unlike its predecessors, which supported only univariate forecasting, Chronos-2 can jointly predict multiple coevolving time series (multivariate forecasting) and incorporate external factors like promotional schedules or weather conditions (covariate-informed forecasting). For example, cloud operations teams can forecast CPU usage, memory consumption, and storage I/O together, while retailers can factor in planned promotions when predicting demand. The model's group attention mechanism enables it to capture complex interactions between variables, making it particularly valuable for cold-start scenarios where limited historical data is available.

  2. Quantum computing has long promised exponentially faster computation for certain problems, but quantum devices’ extreme sensitivity to environmental noise has limited practical applications. Amazon Web Services' new Ocelot chip represents a breakthrough in addressing this challenge. Ocelot uses bosonic quantum error correction based on "cat qubits", named after Schrödinger's famous thought experiment.

    1920x1080_Ocelot.jpg
    The pair of silicon microchips that compose the Ocelot logical-qubit memory chip.

    Traditional quantum error correction methods require thousands of physical qubits per logical qubit to achieve usable error rates, creating an enormous resource overhead. Ocelot's innovative architecture exponentially suppresses bit-flip errors at the physical level while using a simple repetition code to correct phase-flip errors. This approach achieves bit-flip times approaching one second — more than a thousand times longer than conventional superconducting qubits — while maintaining phase-flip times sufficient for error correction. The result is a distance-5 error-correcting code requiring only nine qubits total, versus 49 qubits for equivalent surface code implementations.

  3. As agentic AI systems move from concept to reality, fundamental scientific questions emerge about how these systems should share information and interact strategically. Amazon Scholar Michael Kearns explores several research frontiers that will shape the development of AI agents capable of acting autonomously on users' behalf.

    One intriguing question is what language agents will speak to each other. While agents must communicate with humans in natural language, agent-to-agent communication might be more efficient in the native "language" of neural networks: embeddings, where meanings are represented as vectors in a representational space. Just as websites today offer content in multiple human languages, we may see an "agentic Web" where content is pretranslated into standardized embeddings.

    Restaurant embeddings.jpg
    In this example, the red, green, and blue points are three-dimensional embeddings of restaurants at which three people (Alice, Bob, and Chris) have eaten. (A real-world embedding, by contrast, might have hundreds of dimensions.) Each glowing point represents the center of one of the clusters, and its values summarize the restaurant preferences of the corresponding person. AI agents could use such vector representations, rather than text, to share information with each other.

    Context sharing presents another challenge: agents must balance the benefits of sharing working memory with privacy concerns. When your travel agent negotiates with a hotel booking service, how much context about your preferences should it share — and how much financial information should it withhold?

  4. Inspired by how large language models are trained on diverse text corpora, Amazon researchers developed Mitra, a tabular foundation model pretrained entirely on synthetic datasets. While this may seem counterintuitive, real-world tabular data is often limited and heterogeneous, making it more practical to simulate diverse patterns that cover a wide range of possible data distributions.

    The key insight behind Mitra is that the quality of synthetic priors determines how well the model generalizes. Effective priors yield good performance on real tasks, exhibit diversity to prevent overfitting, and offer unique patterns not found elsewhere. Mitra's training mixture includes structural causal models — which combine graphs of causal dependencies with probabilistic equations — and popular tree-based methods like gradient boosting, random forests, and decision trees.

    Mitra overview.png
    Overview of the Mitra framework. We pretrain tabular foundation models (TFMs) on a mixture of synthetic data priors, including structural causal models and tree-based models. Each dataset is split into support and query sets. Mitra supports both 2-D attention across rows and columns and 1-D row-wise attention. At inference, the model conditions on support examples from real datasets to predict query labels using in-context learning (ICL) without gradient updates.

    Released as part of AutoGluon 1.4, Mitra demonstrates state-of-the-art performance through in-context learning: it can predict labels for new datasets when conditioned on a moderate number of examples, without requiring gradient updates or task-specific training.

  5. When Amazon Aurora launched in 2015, it promised to combine the cost effectiveness of MySQL with the performance of high-end commercial databases. The key innovation was decoupling computation from storage, a departure from traditional database architectures.

    By moving durability concerns to a separate, purpose-built storage service and offloading caching and logging layers to a scale-out, self-healing system, Aurora addressed the central constraint in cloud computing: the network. This service-oriented architecture protects databases from performance variance and failures while enabling independent scaling of performance, availability, and durability.

    Amazon Aurora: Design Considerations for High Throughput Cloud-Native Relational Databases
    In their 2017 paper, Amazon researchers describe the architecture of Amazon Aurora.

    Over the past decade, Aurora has continued to evolve. Aurora Serverless, introduced in 2018, brought on-demand autoscaling that lets customers adjust computational capacity based on workload needs, using sophisticated resource management techniques including oversubscription, reactive control, and distributed decision making. As of May 2025, all Aurora offerings are now serverless: customers no longer need to choose specific server types or worry about underlying hardware, patching, or backups.

  6. Converting unstructured or poorly structured data into clean, schema-compliant records is a critical task across domains from healthcare to e-commerce. While large language models can perform this task when prompted with schema specifications, this approach has drawbacks: high costs at scale, complex prompts, and limitations on the complexity of the schemas.

    In a pair of recent papers, Amazon researchers introduced SoLM (the structured-object language model), a lightweight specialized model trained to generate objects in specific schemas using a novel self-supervised denoising method. Rather than training SoLM on clean examples, the researchers take existing structured records, introduce artificial noise, and train the model to recover the original forms. By making the noise increasingly aggressive — even completely removing structure or randomly shuffling tokens — the researchers enhance the model’s quality and teach it to operate on completely unstructured input.

    A key innovation is confidence-aware substructure beam search (CABS), which applies beam search at the level of key-value pairs rather than individual tokens, using a separately trained confidence model to predict each pair's probability. This approach dramatically improves accuracy while mitigating hallucination risks.

  7. Traditional embedding-based information retrieval compares a query vector to every possible response vector in a database, a time-consuming process as datasets grow. Amazon's GENIUS (generative universal multimodal search) model takes a different approach: instead of comparing vectors, it uses input queries to directly generate ID codes for data items.

    Comparison of search methods.png
    With embedding-based retrieval (a), a text embedding must be compared to every possible image embedding, or vice versa. With generative retrieval (b and c), by contrast, a retrieval model generates a single ID for each query. With GENIUS (c), the first digit of the ID code indicates the modality of the output.

    Presented at CVPR 2025, GENIUS is a multimodal model whose inputs and outputs can be any combination of images, texts, or image-text pairs. Two key innovations enable GENIUS's performance. The first is semantic quantization, where IDs are generated piecemeal, with each new ID segment focusing in more precisely on the target data item's location in the representational space. The second is query augmentation, which generates additional training queries by interpolating between initial queries and target IDs in the representational space, helping the model generalize to new data types.

  8. Foundation models have transformed language and computer vision, but their adoption in scientific domains like computational fluid dynamics has been slower. What will it take for them to play a more significant role in scientific applications?

    FoundationModels-AutoAirflow-16x9.general-purpose_caption.png
    A DrivAerML dataset surface plot of the normalized magnitude of wall shear stress (wall friction coefficient).

    To help answer this question, Amazon applied scientist Danielle Maddix Robinson explores foundation models’ application to time series forecasting, with both univariate and spatiotemporal data. Scientific foundation models face challenges that large language models don’t: severe data scarcity (since generating high-quality scientific data often requires expensive numerical simulations), the constraints of inviolable physical laws, and the need for robust uncertainty quantification in safety-critical applications.

    For univariate time series, Robinson and her colleagues address data scarcity with synthetic pretraining data. The resulting model demonstrated surprising strength on chaotic dynamical systems — not because it was designed for them but because of its ability to "parrot" past history without regressing to the mean, as classical methods do. For spatiotemporal forecasting in domains like weather prediction and aerodynamics, the researchers found important trade-offs between accuracy and memory consumption across different architectures, with some models better suited for short-term forecasts and others for long-term stability.

  9. Managing fleets of thousands of mobile robots in Amazon fulfillment centers requires predicting the robots’ future locations, to minimize congestion when assigning tasks and routes. But using the robots’ navigation algorithms to simulate their interactions faster than real time would be prohibitively resource intensive.

    Amazon's DeepFleet foundation models learn to predict robot locations from billions of hours of real-world navigation data collected from the million-plus robots deployed across Amazon fulfillment and sortation centers. Like language models that learn general competencies from diverse texts, DeepFleet learns general traffic flow patterns that enable it to quickly infer how situations will likely unfold and help assign tasks and route robots around congestion.

    Sample models of a fulfillment center (top) and a sortation center (bottom).
    Sample models of a fulfillment center (top) and a sortation center (bottom).

    Researchers experimented with four distinct model architectures — robot-centric, robot-floor, image-floor, and graph-floor — each offering a different answer to fundamental design questions: Should inputs represent individual robot states or whole-floor states? Should floor layouts be encoded as features, images, or graphs? How should time be handled?

  10. AI agents represent a leap forward in generative AI, a move from chat interfaces to systems that act autonomously on users' behalf — booking travel, making purchases, building software. But how do agentic systems actually work? Amazon vice president and distinguished engineer Marc Brooker demystifies the core components of agents and explains the design choices behind AWS's Bedrock AgentCore framework.

    At their heart, agents run models and tools in a loop to achieve goals. The user provides a goal; the agent uses an LLM to plan how to achieve it; and the agent repeatedly calls tools — databases, APIs, services — based on the model's instructions, updating its plan as it receives responses.

    But making such systems work in practice requires sophisticated infrastructure. AgentCore uses Firecracker microVMs to provide secure, efficient isolation for each agent session, with startup times measured in milliseconds and overhead as low as a few megabytes. The AgentCore Gateway service manages tool calls using standards like the model context protocol, translating between the LLM's outputs and tool input specifications. When no API exists for a needed action, Amazon's Nova Act enables computer use, letting agents interact with any website by pointing and clicking.

Related content

CN, 11, Beijing
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:北京朝阳区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML或搜索领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊的International Technology搜索团队改善Amazon的产品搜索服务。我们的目标是帮助亚马逊的客户找到他们所需的产品,并发现他们感兴趣的新产品。 这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些模型到搜索引擎中为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
CN, 44, Shenzhen
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:深圳福田区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊。这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
LU, Luxembourg
Join our team as an Applied Scientist II where you'll develop innovative machine learning solutions that directly impact millions of customers. You'll work on ambiguous problems where neither the problem nor solution is well-defined, inventing novel scientific approaches to address customer needs at the project level. This role combines deep scientific expertise with hands-on implementation to deliver production-ready solutions that drive measurable business outcomes. Key job responsibilities Invent: - Design and develop novel machine learning models and algorithms to solve ambiguous customer problems where textbook solutions don't exist - Extend state-of-the-art scientific techniques and invent new approaches driven by customer needs at the project level - Produce internal research reports with the rigor of top-tier publications, documenting scientific findings and methodologies - Stay current with academic literature and research trends, applying latest techniques when appropriate Implement: - Write production-quality code that meets or exceeds SDE I standards, ensuring solutions are testable, maintainable, and scalable - Deploy components directly into production systems supporting large-scale applications and services - Optimize algorithm and model performance through rigorous testing and iterative improvements - Document design decisions and implementation details to enable reproducibility and knowledge transfer - Contribute to operational excellence by analyzing performance gaps and proposing solutions Influence: - Collaborate with cross-functional teams to translate business goals into scientific problems and metrics - Mentor junior scientists and help new teammates understand customer needs and technical solutions - Present findings and recommendations to both technical and non-technical stakeholders - Contribute to team roadmaps, priorities, and strategic planning discussions - Participate in hiring and interviewing to build world-class science teams
US, CA, East Palo Alto
Amazon Aurora DSQL is a serverless, distributed SQL database with virtually unlimited scale, highest availability, and zero infrastructure management. Aurora DSQL provides active-active high availability, providing strong data consistency designed for 99.99% single-Region and 99.999% multi-Region availability. Aurora DSQL automatically manages and scales system resources, so you don't have to worry about maintenance downtime and provisioning, patching, or upgrading infrastructure. As a Senior Applied Scientist, you will be expected to lead research and development in advanced query optimization techniques for distributed sql services. You will innovate in the query planning and execution layer to help Aurora DSQL succeed at delivering high performance for complex OLTP workloads. You will develop novel approaches to stats collection, query planning, execution and optimization. You will drive industry leading research, publish your research and help convert your research into implementations to make Aurora DSQL the fastest sql database for OLTP workloads. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities Our engineers collaborate across diverse teams, projects, and environments to have a firsthand impact on our global customer base. You’ll bring a passion for innovation, data, search, analytics, and distributed systems. You’ll also: Solve challenging technical problems, often ones not solved before, at every layer of the stack. Design, implement, test, deploy and maintain innovative software solutions to transform service performance, durability, cost, and security. Build high-quality, highly available, always-on products. Research implementations that deliver the best possible experiences for customers. A day in the life As you design and code solutions to help our team drive efficiencies in software architecture, you’ll create metrics, implement automation and other improvements, and resolve the root cause of software defects. You’ll also: Build high-impact solutions to deliver to our large customer base. Participate in design discussions, code review, and communicate with internal and external stakeholders. Work cross-functionally to help drive business decisions with your technical input. Work in a startup-like development environment, where you’re always working on the most important stuff. About the team Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge-sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects that help our team members develop your engineering expertise so you feel empowered to take on more complex tasks in the future. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. About AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, VA, Arlington
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Seattle
We are looking for a researcher in state-of-the-art LLM technologies for applications across Alexa, AWS, and other Amazon businesses. In this role, you will innovate in the fastest-moving fields of current AI research, in particular in how to integrate a broad range of structured and unstructured information into AI systems (e.g. with RAG techniques), and get to immediately apply your results in highly visible Amazon products. If you are deeply familiar with LLMs, natural language processing, computer vision, and machine learning and thrive in a fast-paced environment, this may be the right opportunity for you. Our fast-paced environment requires a high degree of autonomy to deliver ambitious science innovations all the way to production. You will work with other science and engineering teams as well as business stakeholders to maximize velocity and impact of your deliverables. It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experience of Amazon customers worldwide!
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, time-series forecasting, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, time-series, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep-training in one area of econometrics. For example, many applications on the team use structural econometrics, machine-learning, and time-series forecasting. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Are you interested in building Agentic AI solutions that solve complex builder experience challenges with significant global impact? The Security Tooling team designs and builds high-performance AI systems using LLMs and machine learning that identify builder bottlenecks, automate security workflows, and optimize the software development lifecycle—empowering engineering teams worldwide to ship secure code faster while maintaining the highest security standards. As a Senior Applied Scientist on our Security Tooling team, you will focus on building state-of-the-art ML models to enhance builder experience and productivity. You will identify builder bottlenecks and pain points across the software development lifecycle, design and apply experiments to study developer behavior, and measure the downstream impacts of security tooling on engineering velocity and code quality. Our team rewards curiosity while maintaining a laser-focus on bringing products to market that empower builders while maintaining security excellence. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in builder experience and security automation, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform how builders interact with security tools and how organizations balance security requirements with developer productivity. Key job responsibilities • Design and implement novel AI/ML solutions for complex security challenges and improve builder experience • Drive advancements in machine learning and science • Balance theoretical knowledge with practical implementation • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results • Establish best practices for ML experimentation, evaluation, development and deployment You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life • Integrate ML models into production security tooling with engineering teams • Build and refine ML models and LLM-based agentic systems that understand builder intent • Create agentic AI solutions that reduce security friction while maintaining high security standards • Prototype LLM-powered features that automate repetitive security tasks • Design and conduct experiments (A/B tests, observational studies) to measure downstream impacts of tooling changes on engineering productivity • Present experimental results and recommendations to leadership and cross-functional teams • Gather feedback from builder communities to validate hypotheses About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, WA, Bellevue
We are seeking a Senior Manager, Applied Science to lead the applied science charter for Amazon’s Last-Hundred-Yard automation initiative, developing the algorithms, models, and learning systems that enable safe, reliable, and scalable autonomous delivery from vehicle to customer doorstep. This role owns the scientific direction across perception, localization, prediction, planning, learning-based controls, human-robot interaction (HRI), and data-driven autonomy validation, operating in complex, unstructured real-world environments. The Senior Manager will build and lead a high-performing team of applied scientists, set the technical vision and research-to-production roadmap, and ensure tight integration between science, engineering, simulation, and operations. This leader is responsible for translating ambiguous real-world delivery problems into rigorous modeling approaches, measurable autonomy improvements, and production-ready solutions that scale across cities, terrains, weather conditions, and customer scenarios. Success in this role requires deep expertise in machine learning and robotics, strong people leadership, and the ability to balance long-term scientific innovation with near-term delivery milestones. The Senior Manager will play a critical role in defining how Amazon applies science to unlock autonomous last-mile delivery at scale, while maintaining the highest bars for safety, customer trust, and operational performance. Key job responsibilities Set and own the applied science vision and roadmap for last-hundred-yard automation, spanning perception, localization, prediction, planning, learning-based controls, and HRI. Build, lead, and develop a high-performing applied science organization, including hiring, mentoring, performance management, and technical bar-raising. Drive the end-to-end science lifecycle from problem formulation and data strategy to model development, evaluation, deployment, and iteration in production. Partner closely with autonomy engineering to translate scientific advances into scalable, production-ready autonomy behaviors. Define and own scientific success metrics (e.g., autonomy performance, safety indicators, scenario coverage, intervention reduction) and ensure measurable impact. Lead the development of learning-driven autonomy using real-world data, simulation, and offline/online evaluation frameworks. Establish principled approaches for generalization across environments, including weather, terrain, lighting, customer properties, and interaction scenarios. Drive alignment between real-world operations and simulation, ensuring tight feedback loops for data collection and model validation. Influence safety strategy and validation by defining scientific evidence required for autonomy readiness and scale. Represent applied science in executive reviews, articulating trade-offs, risks, and long-term innovation paths.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Enable unprecedented robustness and reliability, industry-ready - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities As an Applied Science Manager in the Foundations Model team, you will: - Build and lead a team of scientists and developers responsible for foundation model development - Define the right ‘FM recipe’ to reach industry ready solutions - Define the right strategy to ensure fast and efficient development, combining state of the art methods, research and engineering. - Lead Model Development and Training: Designing and implementing the model architectures, training and fine tuning the foundation models using various datasets, and optimize the model performance through iterative experiments - Lead Data Management: Process and prepare training data, including data governance, provenance tracking, data quality checks and creating reusable data pipelines. - Lead Experimentation and Validation: Design and execute experiments to test model capabilities on the simulator and on the embodiment, validate performance across different scenarios, create a baseline and iteratively improve model performance. - Lead Code Development: Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Research: Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Collaboration: Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.