A decade of database innovation: The Amazon Aurora story

From reimagining storage to serverless computing, Aurora continues to push the boundaries of what's possible in database technology.

When Andy Jassy, then head of Amazon Web Services, announced Amazon Aurora in 2014, the pitch was bold but metered: Aurora would be a relational database built for the cloud. As such, it would provide access to cost-effective, fast, and scalable computing infrastructure.

In essence, he explained, Aurora would combine the cost effectiveness and simplicity of MySQL with the speed and availability of high-end commercial databases, the kind that firms typically managed on their own. In numbers, Aurora promised five times the throughput (e.g., the number of transactions, queries, read/write operations) of MySQL at one-tenth the price of commercial database solutions, all while offloading costly management challenges and maintaining performance and availability.

AWS re:Invent 2014 | Announcing Amazon Aurora for RDS

Aurora launched a year later, in 2015. Significantly, it decoupled computation from storage, a distinct contrast to traditional database architectures where the two are entwined. This fundamental innovation, along with automated backups and replication and other improvements, enabled easy scaling for both computational tasks and storage, while meeting reliability demands.

“Aurora's design preserves the core transactional consistency strengths of relational databases. It innovates at the storage layer to create a database built for the cloud that can support modern workloads without sacrificing performance,” explained Werner Vogels, Amazon’s CTO, in 2019.

“To start addressing the limitations of relational databases, we reconceptualized the stack by decomposing the system into its fundamental building blocks,” Vogels said. “We recognized that the caching and logging layers were ripe for innovation. We could move these layers into a purpose-built, scale-out, self-healing, multitenant, database-optimized storage service. When we began building the distributed storage system, Amazon Aurora was born.”

Within two years, Aurora became the fastest-growing service in AWS history. Tens of thousands of customers — including financial-services companies, gaming companies, healthcare providers, educational institutions, and startups — turned to Aurora to help carry their workloads.

In the intervening years, Aurora has continued to evolve to suit the needs of a changing digital landscape. Most recently, in 2024, Amazon announced Aurora DSQL. A major step forward, Aurora DSQL is a serverless approach designed for global scale and enhanced adaptability to variable workloads.

Today, International Data Corporation (IDC) research estimates that firms using Aurora see a three-year return on investment of 434 percent and an operational cost reduction of 42 percent compared to other database solutions.

But what lies behind those figures? How did Aurora become so valuable to its users? To understand that, it’s useful to consider what came before.

A time for reinvention

In 2015, as cloud computing was gaining popularity, legacy firms began migrating workloads away from on-premises data centers to save money on capital investments and in-house maintenance. At the same time, mobile and web app startups were calling for remote, highly reliable databases that could scale in an instant. The theme was clear: computing and storage needed to be elastic and reliable. The reality was that, at the time, most databases simply hadn’t adapted to those needs.

Amazon engineers recognized that the cloud could enable virtually unlimited, networked storage and, separately, compute.

That rigidity makes sense considering the origin of databases and the problems they were invented to solve. The 1960s saw one of their earliest uses: NASA engineers had to navigate a complex list of parts, components, and systems as they built spacecraft for moon exploration. That need inspired the creation of the Information Management System, or IMS, a hierarchically structured solution that allowed engineers to more easily locate relevant information, such as the sizes or compatibilities of various parts and components. While IMS was a boon at the time, it was also limited. Finding parts meant engineers had to write batches of specially coded queries that would then move through a tree-like data structure, a relatively slow and specialized process.

In 1970, the idea of relational databases made its public debut when E. F. Codd coined the term. Relational databases organized data according to how it was related: customers and their purchases, for instance, or students in a class. Relational databases meant faster search, since data was stored in structured tables, and queries didn’t require special coding knowledge. With programming languages like SQL, relational databases became a dominant model for storing and retrieving structured data.

By the 1990s, however, that approach began to show its limits. Firms that needed more computing capabilities typically had to buy and physically install more on-premises servers. They also needed specialists to manage new capabilities, such as the influx of transactional workloads — as, for instance, when increasing numbers of customers added more and more pet supplies to virtual shopping carts. By the time AWS arrived in 2006, these legacy databases were the most brittle, least elastic component of a company’s IT stack.

The emergence of cloud computing promised a better way forward with more flexibility and remotely managed solutions. Amazon engineers recognized that the cloud could enable virtually unlimited, networked storage and, separately, computation.

Original screenshots of Aurora from Jeff Barr’s blog post.

The Amazon Relational Database Service (Amazon RDS) debuted in 2009 to help customers set up, operate, and scale a MySQL database in the cloud. And while that service expanded to include Oracle, SQL Server, and PostgreSQL, as Jeff Barr noted in a 2014 blog post, those database engines “were designed to function in a constrained and somewhat simplistic hardware environment.”

AWS researchers challenged themselves to examine those constraints and “quickly realized that they had a unique opportunity to create an efficient, integrated design that encompassed the storage, network, compute, system software, and database software”.

In their 2017 paper, Amazon researchers describe the architecture of Amazon Aurora.

“The central constraint in high-throughput data processing has moved from compute and storage to the network,” wrote the authors of a SIGMOD 2017 paper describing Aurora’s architecture. Aurora researchers addressed that constraint via “a novel, service-oriented architecture”, one that offered significant advantages over traditional approaches. These included “building storage as an independent fault-tolerant and self-healing service across multiple data centers … protecting databases from performance variance and transient or permanent failures at either the networking or storage tiers.”'

The serverless era is now

In the years since its debut, Amazon engineers and researchers have ensured Aurora has kept pace with customer needs. In 2018, Aurora Serverless provided an on-demand autoscaling configuration that allowed customers to adjust computational capacity up and down based on their needs. Later versions further optimized that process by automatically scaling based on customer needs. That approach relieves the customer of the need to explicitly manage database capacity; customers need to specify only minimum and maximum levels.

Achieving that sort of “resource elasticity at high levels of efficiency” meant Aurora Serverless had to address several challenges, wrote the authors of a VLDB 2024 paper. “These included policy issues such as how to define ‘heat’ (i.e., resource usage features on which to base decision making)” and how to determine whether remedial action may be required. Aurora Serverless meets those challenges, the authors noted, by adapting and modifying “well-established ideas related to resource oversubscription; reactive control informed by recent measurements; distributed and hierarchical decision making; and innovations in the DB engine, OS, and hypervisor for efficiency.”

The 2024 paper describes Amazon Aurora Serverless as an on-demand, autoscaling configuration for Amazon Aurora with full MySQL and PostgreSQL compatibility.

As of May 2025, all of Aurora’s offerings are now serverless. Customers no longer need to choose a specific server type or size or worry about the underlying hardware or operating system, patching, or backups; all that is completely managed by AWS. “One of the things that we’ve tried to design from the beginning is a database where you don’t have to worry about the internals,” Marc Brooker, AWS vice president and Distinguished Engineer, said at AWS re:Invent in 2024.

These are exactly the capabilities that Arizona State University needs, says John Rome, deputy chief information officer at ASU. Each fall, the university’s data needs explode when classes for its more than 73,000 students are in session across multiple campuses. Aurora lets ASU pay for the computation and storage it uses and helps it to adapt on the fly.

We see Amazon Aurora Serverless as a next step in our cloud maturity.
John Rome, deputy chief information officer at ASU

“We see Amazon Aurora Serverless as a next step in our cloud maturity,” Rome says, “to help us improve development agility while reducing costs on infrequently used systems, to further optimize our overall infrastructure operations.”

And what might the next step in maturity look like for the now 10-year-old Aurora service? The authors of that 2024 paper outlined several potential paths. Those include “introducing predictive techniques for live migration”; “exploiting statistical multiplexing opportunities stemming from complementary resource needs”, and “using sophisticated ML/RL-based techniques for workload prediction and decision making.”

Swami at kiosk_Aurora 10 year tshirts.jpg
Swami Sivasubramanian (center), VP, AWS Agentic AI, and the AWS databases team at re:Invent 2024.

Research areas

Related content

US, VA, Arlington
The Global Real Estate and Facilities (GREF) team provides real estate transaction expertise, business partnering, space & occupancy planning, design and construction, capital investment program management and facility maintenance and operations for Amazon’s corporate office portfolio across multiple countries. We partner with suppliers to ensure quality, innovation and operational excellence with Amazon’s business and utilize customer driven feedback to continuously improve and exceed employee expectations. Within GREF, the newly formed Global Transformation & Insights (GTI) team is responsible for Customer Insights, Business Insights, Creative, and Communications. We are a group of builders, creators, innovators and go getters. We are customer obsessed, and index high on Ownership. We Think Big, and move fast, and constantly challenge one another while collaborating on "what else", "how might we", and "how can I help". We celebrate the unique perspectives we each bring to the table. We thrive in ambiguity. The ideal Senior Data Scientist candidate thrives in ambiguous environments where the business problem is known, though the technical strategy is not defined. They are able to investigate and develop strategies and concepts to frame a solution set and enable detailed design to commence. They must have strong problem-solving capabilities to isolate, define, resolve complex problems, and implement effective and efficient solutions. They should have experience working in large scale organizations – where data sets are large and complex. They should have high judgement with the ability to balance the right data fidelity with right speed with right confidence level for various stages of analysis and purposes. They should have experience partnering with a broad set of functional teams and levels with the ability to adjust and synthesize their approaches, assumptions, and recommendations to audiences with varying levels of technical knowledge. They are mentors and strong partners with research scientists and other data scientists. Key job responsibilities - Demonstrate advanced technical expertise in data science - Provide scientific and technical leadership within the team - Stay current with emerging technologies and methodologies - Apply data science techniques to solve business problems - Guide and mentor junior data scientists - Share knowledge about scientific advancements with team members - Contribute to the technical growth of the organization - Work on complex, high-impact projects - Influence data science strategy and direction - Collaborate across teams to drive data-driven decision making
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research and implementation that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Implement and optimize control algorithms for robot locomotion - Support development of behaviors that enable robots to traverse diverse terrain - Contribute to methods that integrate stability, locomotion, and manipulation tasks - Help create dynamics models and simulations that enable sim2real transfer of algorithms - Collaborate effectively with multi-disciplinary teams on hardware and algorithms for loco-manipulation
US, WA, Bellevue
Amazon’s Middle Mile Planning Research and Optimization Science group (mmPROS) is looking for a Senior Research Scientist specializing in design and evaluation of algorithms for predictive modeling and optimization applied to large-scale transportation planning systems. This includes the development of novel machine learning and causal modeling techniques to improve on marketplace optimization solutions. Middle Mile Air and Ground transportation represents one of the fastest growing logistics areas within Amazon. Amazon Fulfillment Services transports millions of packages via air and ground and continues to grow year over year. The scale of this operation challenges Amazon to design, build and operate robust transportation networks that minimize the overall operational cost while meeting all customer deadlines. The Middle Mile Planning Research and Optimization Science group is charged with developing an evolving suite of decision support and optimization tools to facilitate the design of efficient air and ground transport networks, optimize the flow of packages within the network to efficiently align network capacity and shipment demand, set prices, and effectively utilize scarce resources, such as aircraft and trucks. Time horizons for these tools vary from years and months for long-term planning to hours and minutes for near-term operational decision making and disruption recovery. These tools rely heavily on mathematical optimization, stochastic simulation, meta-heuristic and machine learning techniques. In addition, Amazon often finds existing techniques do not effectively match our unique business needs which necessitates the innovation and development of new approaches and algorithms to find an adequate solution. As an Applied Scientist responsible for middle mile transportation, you will be working closely with different teams including business leaders and engineers to design and build scalable products operating across multiple transportation modes. You will create experiments and prototype implementations of new learning algorithms and prediction techniques. You will have exposure to top level leadership to present findings of your research. You will also work closely with other scientists and also engineers to implement your models within our production system. You will implement solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility, and make decisions that affect the way we build and integrate algorithms across our product portfolio.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation with single and dual arm manipulation - Leverage simulation and real-world data collection to create large datasets for model development - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for dexterous manipulation
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement whole body control methods for balance, locomotion, and dexterous manipulation - Utilize state-of-the-art in methods in learned and model-based control - Create robust and safe behaviors for different terrains and tasks - Implement real-time controllers with stability guarantees - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for loco-manipulation - Mentor junior engineer and scientists
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities - Build, adapt and evaluate ML models for life sciences applications - Collaborate with a cross-functional team of ML scientists, biologists, software engineers and product managers
TW, TPE, Hsinchu City
Are you passionate about robotics and research? Do you want to solve real customer problems through innovative technology? Do you enjoy working on scalable research and projects in a collaborative team environment? Do you want to see your science solutions directly impact millions of customers worldwide? At Amazon, we hire the best minds in technology to innovate and build on behalf of our customers. Customer obsession is part of our company DNA, which has made us one of the world's most beloved brands. We’re looking for current PhD or Master students with a passion for robotic research and applications to join us as Robotics Applied Scientist II Intern/Co-ops in 2026 to shape the future of robotics and automation at an unprecedented scale across. For these positions, our Robotics teams at Amazon are looking for students with a specialization in one or more of the research areas in robotics such as: robotics, robotics manipulation (e.g., robot arm, grasping, dexterous manipulation, end of arm tools/end effector), autonomous mobile robots, mobile manipulation, movement, autonomous navigation, locomotion, motion/path planning, controls, perception, sensing, robot learning, artificial intelligence, machine learning, computer vision, large language models, human-robot interaction, robotics simulation, optimization, and more! We're looking for curious minds who think big and want to define tomorrow's technology. At Amazon, you'll grow into the high-impact engineer you know you can be, supported by a culture of learning and mentorship. Every day brings exciting new challenges and opportunities for personal growth. By applying to this role, you will be considered for Robotics Applied Scientist II Intern/Co-op (2026) opportunities across various Robotics teams at Amazon with different robotics research focus, with internship positions available for multiple locations, durations (3 to 6+ months), and year-round start dates (winter, spring, summer, fall). Amazon intern and co-op roles follow the same internship structure. "Intern/Internship" wording refers to both interns and co-ops. Amazon internships across all seasons are full-time positions during vacation, and interns should expect to work in office, Monday-Friday, up to 40 hours per week typically between 9am-6pm. Specific team norms around working hours will be communicated by your manager. Interns should not have other employment during the Amazon work-day. Applicants should have a minimum of one quarter/semester/trimester remaining in their studies after their internship concludes. The robotics internship join dates, length, location, and prospective team will be finalized at the time of any applicable job offers. In your application, you will be able to provide your preference of research interests, start dates, internship duration, and location. While your preference will be taken into consideration, we cannot guarantee that we can meet your selection based on several factors including but not limited to the internship availability and business needs of this role.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities As an Applied Science, you will have access to large datasets with billions of images and video to build large-scale machine learning systems. Additionally, you will analyze and model terabytes of text, images, and other types of data to solve real-world problems and translate business and functional requirements into quick prototypes or proofs of concept. We are looking for smart scientists capable of using a variety of domain expertise combined with machine learning and statistical techniques to invent, design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. About the team Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Prime Air is seeking an experienced Applied Science Manager to help develop our advanced Navigation algorithms and flight software applications. In this role, you will lead a team of scientists and engineers to conduct analyses, support cross-functional decision-making, define system architectures and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. This person must be comfortable working with a team of top-notch software developers and collaborating with our science teams. We’re looking for someone who innovates, and loves solving hard problems. You will work hard, have fun, and make history! Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.