Customer-obsessed science
Research areas
-
December 1, 20258 min read“Network language models” will coordinate complex interactions among intelligent components, computational infrastructure, access points, data centers, and more.
-
-
November 20, 20254 min read
-
October 20, 20254 min read
-
October 14, 20257 min read
Featured news
-
NAACL 20222022User sessions empower many search and recommendation tasks on a daily basis. Such session data are semi-structured, which encode heterogeneous relations between queries and products, and each item is described by the unstructured text. Despite recent advances in self-supervised learning for text or graphs, there lack of self-supervised learning models that can effectively capture both intra-item semantics
-
NAACL 20222022Evaluation of keyword spotting (KWS) systems that detect keywords in speech is a challenging task under realistic privacy constraints. The KWS is designed to only collect data when the keyword is present, limiting the availability of hard samples that may contain false negatives, and preventing direct estimation of model recall from production data. Alternatively, complementary data collected from other
-
CVPR 20222022Vision-language representation learning largely benefits from image-text alignment through contrastive losses (e.g., InfoNCE loss). The success of this alignment strategy is attributed to its capability in maximizing the mutual information (MI) between an image and its matched text. However, simply performing cross-modal alignment (CMA) ignores data potential within each modality, which may result in degraded
-
CVPR 20222022Aligning signals from different modalities is an important step in vision-language representation learning as it affects the performance of later stages such as cross-modality fusion. Since image and text typically reside in different regions of the feature space, directly aligning them at instance level is challenging especially when features are still evolving during training. In this paper, we propose
-
CVPR 2022 Workshop on New Trends in Image Restoration and Enhancement and Challenges2022Deep learning model inference on embedded devices is challenging due to the limited availability of computation resources. A popular alternative is to perform model inference on the cloud, which requires transmitting images from the embedded device to the cloud. Image compression techniques are commonly employed in such cloud-based architectures to reduce transmission latency over low bandwidth networks
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all