Customer-obsessed science
Research areas
-
November 20, 20254 min readA new evaluation pipeline called FiSCo uncovers hidden biases and offers an assessment framework that evolves alongside language models.
-
October 2, 20253 min read
-
-
-
September 2, 20253 min read
Featured news
-
SIGIR 20232023Query Parsing aims to extract product attributes, such as color, brand, and product type, from search queries. These attributes play a crucial role in search engines for tasks such as matching, ranking, and recommendation. There are two types of attributes: explicit attributes that are mentioned explicitly in the search query, and implicit attributes that are mentioned implicitly. Existing works on query
-
ICLR 2022 Workshop on Practical Machine Learning for Developing Countries2023In text classification tasks, fine tuning pretrained language models like BERT and GPT-3 yields competitive accuracy; however, both methods require pretraining on large text datasets. In contrast, general topic modeling methods possess the advantage of analyzing documents to extract meaningful patterns of words without the need of pretraining. To leverage topic modeling’s unsupervised insights extraction
-
ICLR 2023 Workshop on Trustworthy Machine Learning for Healthcare2023Explainability of machine learning methods is of fundamental importance in healthcare to calibrate trust. A large branch of explainable machine learning uses tools linked to the Shapley value, which have nonetheless been found difficult to interpret and potentially misleading. Taking multiclass classification as a reference task, we argue that a critical issue in these methods is that they disregard the
-
ACL Findings 20232023Recently, Neural Topic Models (NTM), inspired by variational autoencoders, have attracted a lot of research interest; however, these methods have limited applications in the real world due to the challenge of incorporating human knowledge. This work presents a semi-supervised neural topic modeling method, vONTSS, which uses von Mises-Fisher (vMF) based variational autoencoders and optimal transport. When
-
ICML 20232023Differentially private (DP) optimization is the standard paradigm to learn large neural networks that are accurate and privacy-preserving. The computational cost for DP deep learning, however, is notoriously heavy due to the per-sample gradient clipping. Existing DP implementations are 2 ∼ 1000× more costly in time and space complexity than the standard (non-private) training. In this work, we develop a
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all