Customer-obsessed science
Research areas
-
November 20, 20254 min readA new evaluation pipeline called FiSCo uncovers hidden biases and offers an assessment framework that evolves alongside language models.
-
October 2, 20253 min read
-
-
-
September 2, 20253 min read
Featured news
-
Interspeech 20232023Connectionist Temporal Classification (CTC) models are popular for their balance between speed and performance for Automatic Speech Recognition (ASR). However, these CTC models still struggle in other areas, such as personalization towards custom words. A recent approach explores Contextual Adapters, wherein an attention-based biasing model for CTC is used to improve the recognition of custom entities.
-
Interspeech 20232023Recent studies have found that model performance has a smooth power-law relationship, or scaling laws, with training data and model size, for a wide range of problems. These scaling laws allow one to choose nearly optimal data and model sizes. We study whether this scaling property is also applicable to second-pass rescoring, which is an important component of speech recognition systems. We focus on RescoreBERT
-
CUI 20232023Voice assistants interrupt people when they pause mid-question, a frustrating interaction that requires the full repetition of the entire question again. This impacts all users, but particularly people with cognitive impairments. In human-human conversation, these situations are recovered naturally as people understand the words that were uttered. In this paper we build answer pipelines which parse incomplete
-
ACL 2023 Workshop on Biomedical Natural Language Processing (BioNLP)2023Early identification of Adverse Drug Events (ADE) is critical for taking prompt actions while introducing new drugs into the market. These ADEs information are available through various unstructured data sources like clinical study reports, patient health records, social media posts, etc. Extracting ADEs and the related suspect drugs using machine learning is a challenging task due to the complex linguistic
-
Interspeech 20232023Dialogue state tracking (DST) is an important step in dialogue management to keep track of users’ beliefs. Existing works fine-tune all language model (LM) parameters to tackle the DST task, which requires significant data and computing resources for training and hosting. The cost grows exponentially in the real-world deployment where dozens of fine-tuned LM are used for different domains and tasks. To
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all