Customer-obsessed science
Research areas
-
November 20, 20254 min readA new evaluation pipeline called FiSCo uncovers hidden biases and offers an assessment framework that evolves alongside language models.
-
-
-
September 2, 20253 min read
-
Featured news
-
EMNLP 20232023While most task-oriented dialogues assume conversations between the agent and one user at a time, dialogue systems are increasingly expected to communicate with multiple users simultaneously who make decisions collaboratively. To facilitate development of such systems, we release the Multi-User MultiWOZ dataset: task-oriented dialogues among two users and one agent. To collect this dataset, each user utterance
-
ICDM 20232023To analyze multivariate time series, most previous methods assume regular subsampling of time series, where the interval between adjacent measurements and the number of samples remain unchanged. Practically, data collection systems could produce irregularly sampled time series due to sensor failures and interventions. However, existing methods designed for regularly sampled multivariate time series cannot
-
2023 Conference on Digital Experimentation @ MIT (CODE@MIT)2023Online A/B tests have become an indispensable tool across all the technology industry: if performed correctly, “online” experiments can inform effective decision making and product development. It should therefore not be surprising that Gupta et al. [2019] estimates that online businesses alone collectively run hundreds of thousands of experiments annually. Modern online experiments are often run in marketplaces
-
NeurIPS 2023 Workshop on Synthetic Data Generation with Generative AI2023Recent advancements in generative models have led to significant improvements in the quality of generated images, making them virtually indistinguishable from real ones. However, using AI generated images for training robust computer vision models for real-world applications, especially object detection in road scene perception, is still a challenge. AI generated images usually lack the required diversity
-
EMNLP 20232023Studies in bias and fairness in natural language processing have primarily examined social biases within a single language and/or across few attributes (e.g. gender, race). However, biases can manifest differently across various languages for individual attributes. As a result, it is critical to examine biases within each language and attribute. Of equal importance is to study how these biases compare across
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all