105 Amazon Research Awards recipients announced

Awardees, who represent 51 universities in 15 countries, have access to Amazon public datasets, along with AWS AI/ML services and tools.

Amazon Research Awards (ARA) provides unrestricted funds and AWS Promotional Credits to academic researchers investigating various research topics in multiple disciplines. This cycle, ARA received many excellent research proposals from across the world and today is publicly announcing 105 award recipients who represent 51 universities in 15 countries.

This announcement includes awards funded under six call for proposals during the fall 2023 cycle: AI for Information Security, Automated Reasoning, AWS AI, AWS Cryptography and Privacy, AWS Database Services, and Sustainability. Proposals were reviewed for the quality of their scientific content and their potential to impact both the research community and society.

Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

Recipients have access to more than 300 Amazon public datasets and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice, along with opportunities to participate in Amazon events and training sessions.

Recommended reads
Using time to last byte — rather than time to first byte — to assess the effects of data-heavy TLS 1.3 on real-world connections yields more encouraging results.

“We received a fantastic response to the cryptography and privacy engineering’s call for proposals. This was the first time we offered ARAs for cryptography and privacy, and the response far exceeded our expectations, in terms of both the number and quality of the proposals,” said Rod Chapman, senior principal applied scientist with AWS Cryptography. “Advanced cryptography plays a crucial role in building trust with our customers and regulators, especially in emerging domains such as cryptographic computing, generative AI, and privacy-preserving applications. We look forward to working with the new principal investigators to bring ever more impactful cryptographic technologies to fruition.”

Recommended reads
Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

“Given that data is central to Amazon’s core businesses, I am excited by this opportunity to collaborate with universities on cutting-edge technologies for modern database systems,” said Doug Terry, vice president and distinguished scientist in AWS Database and AI Leadership. “These Amazon Research Awards allow us to support projects that have the potential for substantial advancement in important areas from correctness testing of SQL queries to new data models for generative AI applications.”

ARA funds proposals throughout the year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

The tables below list, in alphabetical order by last name, fall 2023 cycle call-for-proposal recipients, sorted by research area.

AI for Information Security

Photo grid shows the recipients of the 2023 fall AI for information security Amazon Research Awards

Recipient

University

Research title

Murat Kocaoglu

Purdue University

Causal Anomaly Detection from Non-stationary Time-series in the Cloud

Hui Liu

Michigan State University

Harnessing the Power of Weakly-Supervised Graph Representation Learning for Cybersecurity

Xiaorui Liu

North Carolina State University

Harnessing the Power of Weakly-Supervised Graph Representation Learning for Cybersecurity

Thomas Pasquier

University of British Columbia

Building Robust Provenance-based Intrusion Detection

Michalis Polychronakis

Stony Brook University

SafeTrans: AI-assisted Transcompilation to Memory-safe Languages

Automated Reasoning

Photo grid shows the recipients of the 2023 fall automated reasoning Amazon Research Awards

Recipient

University

Research title

Armin Biere

University of Freiburg

From Mavericks to Teamplayers: Fostering Solver Cooperation in Distributed SAT Solving

Victor Braberman

Universidad de Buenos Aires

Abstractions for Validating Distributed Protocol Reference Implementations

Varun Chandrasekaran

University of Illinois Urbana-Champaign

Automating Privacy Compliance

Maria Christakis

TU Wien

Testing Dafny for Unsoundness and Brittleness Bugs

Werner Dietl

University of Waterloo

Optional Type Systems for Model-Implementation Consistency

Alastair Donaldson

Imperial College London

Validating Compilers for the Dafny Verified Programming Language

Azadeh Farzan

University of Toronto

Better Predictability in Dynamic Data Race Detection

Sicun Gao

University Of California, San Diego

Proof Optimization and Generalization in dReal

Tobias Grosser

University Of Cambridge

Correct and High-Performance Domain-Specific Compilation with Lean and MLIR

Andrew Head

University Of Pennsylvania

TYCHE: An IDE for Property-Based Testing

Kihong Heo

Korea Advanced Institute Of Science and Technology - KAIST

Generative Translation Validation for JIT Compiler in the V8 JavaScript Engine

Frans Kaashoek

Massachusetts Institute of Technology

Flotilla: Compositional Formal Verification of Liveness of Distributed Systems Implementations

Baris Kasikci

University of Washington - Seattle

Privacy-Conscious Failure Reproduction for Root Cause Diagnosis in Large-Scale Distributed Systems

Laura Kovacs

TU Wien

QuAT: Quantifiers with Arithmetic Theories are Friends with Benefits

Shriram Krishnamurthi

Brown University

Paralegal: Scalable Tooling to Find Privacy Bugs in Application Code

Corina Pasareanu

Carnegie Mellon University

Proving the Absence of Timing Side Channels in Cryptographic Applications

Jean Pichon-Pharabod

Aarhus University

Validating Isolation of Virtual Machines in the Cloud

Benjamin Pierce

University Of Pennsylvania

TYCHE: An IDE for Property-Based Testing

Ruzica Piskac

Yale University

Democratizing the Law - Using LLMs and Automated Reasoning for Legal Reasoning

Malte Schwarzkopf

Brown University

Paralegal: Scalable Tooling to Find Privacy Bugs in Application Code

Peter Sewell

University Of Cambridge

The Foundations of Cloud Virtual-machine Isolation

Scott Shapiro

Yale University

Democratizing the Law - Using LLMs and Automated Reasoning for Legal Reasoning

Geoffrey Sutcliffe

University Of Miami

Automated Theorem Proving Community Infrastructure in the AWS Cloud

Joseph Tassarotti

New York University

Asynchronous Couplings for Probabilistic Relational Reasoning in Dafny

Sebastian Uchitel

Universidad de Buenos Aires

Abstractions for Validating Distributed Protocol Reference Implementations

Josef Urban

Czech Technical University

Learning Based Synthesis Meets Learning Guided Reasoning

Thomas Wies

New York University

Automating Privacy Compliance

Nickolai Zeldovich

Massachusetts Institute of Technology

Flotilla: Compositional Formal Verification of Liveness of Distributed Systems Implementations

AWS AI

Photo grid shows the recipients of the 2023 fall AWS AI Amazon Research Awards

Recipient

University

Research title

Pulkit Agrawal

Massachusetts Institute Of Technology

Adapting Foundation Models without Finetuning

Niranjan Balasubramanian

Stony Brook University

An API Sandbox for Complex Tasks on Common Applications

Osbert Bastani

University Of Pennsylvania

Uncertainty Quantification for Trustworthy Language Generation

Matei Ciocarlie

Columbia University

Do You Speak EMG? Generative Pre-training on Electromyographic Signals for Controlling a Rehabilitation Robot after Stroke

Caiwen Ding

University of Connecticut

Graph of Thought: Boosting Logical Reasoning in Large Language Models

Yufei Ding

University Of California, San Diego

A Hollistic Compiler and Runtime System for Efficient and Scalable LLM Serving

Xinya Du

University Of Texas At Dallas

Process-guided Fine-tuning for Answering Complex Questions

Luciana Ferrer

University of Buenos Aires - CONICET

Efficient Adaptation of Generative Language Models through Unsupervised Calibration

Jakob Foerster

University Of Oxford

Compute-only Scaling of Large Language Models

Nikhil Garg

Cornell University

Recommendation systems in high-stakes settings

Georgia Gkioxari

California Institute Of Technology

Towards a 3D Foundation Model: Recognize and Reconstruct Anything

Tom Goldstein

University of Maryland

Building Safer Diffusion Models

Aditya Grover

University of California, Los Angeles

Personalizing Multimodal Generative Models via In-Context Preference Modeling

Albert Gu

Carnegie Mellon University

Scaling the Next Generation of Foundation Model Architectures

Mahdi S. Hosseini

Concordia University

Toward Auto-Populating Synoptic Reports in Diagnostic Pathology

Maliheh Izadi

Delft University Of Technology

Understanding and Regulating Memorization in Large Language Models for Code

Vijay Janapa Reddi

Harvard University

Benchmarking the Safety of Generative AI Models with Data-centric AI Challenges

Adel Javanmard

University of Southern California

Reliable AI for Generation of Medical Reports from MRI Scans

Jianbo Jiao

University Of Birmingham

PCo3D: Physically Plausible Controllable 3D Generative Models

Subbarao Kambhampati

Arizona State University

Understanding and Leveraging Planning, Reasoning & Self-Critiquing Capabilities of Large Language Models

Kangwook Lee

University Of Wisconsin–Madison

Information and Coding Theory-Based Framework for Prompt Engineering

Ales Leonardis

University Of Birmingham

PCo3D: Physically Plausible Controllable 3D Generative Models

Anqi Liu

Johns Hopkins University

(Multi-)Calibrated Active Learning under Subpopulation Shift

Lydia Liu

Princeton University

From Predictions to Positive Impact: Foundations of Responsible AI in Social Systems

Song Mei

University Of California, Berkeley

Mathematical Foundations and Physical Principles of Foundation Models and Generative AI

Pablo Piantanida

National Centre for Scientific Research (CNRS)

Efficient Adaptation of Generative Language Models through Unsupervised Calibration

Chara Podimata

Massachusetts Institute Of Technology

Responsible AI through User Incentive-Awareness

Bhiksha Raj

Carnegie Mellon University

Text and Speech Large Language Models

Christian Rupprecht

University Of Oxford

Viewset Diffusion for Probabilistic 3D Reconstruction

Olga Russakovsky

Princeton University

Diffusion models: Generative models beyond data generation

Vatsal Sharan

University Of Southern California

Debiasing ML-based Decision Making using Multicalibration

Abhinav Shrivastava

University Of Maryland

Audio-conditioned Diffusion Models for Generating Lip-synchronized Videos

Rachee Singh

Cornell University

Accelerating collective communication for distributed ML

Vincent Sitzmann

Massachusetts Institute Of Technology

2D and 3D Animation via Image-Conditional Generative Flow Models

Justin Solomon

Massachusetts Institute Of Technology

Lightweight Algorithms for Generative AI

Mahdi Soltanolkotabi

University of Southern California

Reliable AI for Generation of Medical Reports from MRI Scans

Qian Tao

Delft University of Technology

Φ-Generative Medical Imaging by Physics and AI (PhAI)

Yapeng Tian

University Of Texas At Dallas

Integrating Visual Alignment and Text Interaction for Multi-modal Audio Content Generation

Sherry Tongshuang Wu

Carnegie Mellon University

Generating Deployable Models from Natural Language Instructions through Adaptive Data Curation

Florian Tramer

Eth Zurich

Can Technology Protect us from Generative AI?

Arie van Deursen

Delft University Of Technology

Understanding and Regulating Memorization in Large Language Models for Code

Andrea Vedaldi

University Of Oxford

Viewset Diffusion for Probabilistic 3D Reconstruction

Carl Vondrick

Columbia University

Viper: Visual Inference via Python Execution for Reasoning

Xiaolong Wang

University of California, San Diego

Generating Compositional 3D Scenes and Embodied Tasks with Large Language Models

Eric Wong

University Of Pennsylvania

Adversarial Manipulation of Prompting Interfaces

Saining Xie

New York University

Image Sculpting: Precise Image Generation and Editing with Interactive Geometry Control

Rex Ying

Yale University

Diff-H: Hyperbolic Text-to-Image Diffusion Generative Model

Minlan Yu

Harvard University

Troubleshooting Distributed Training Systems

Zhiru Zhang

Cornell University

A Unified Approach to Tensor Graph Optimization

AWS Cryptography and Privacy

Photo grid shows the recipients of the 2023 fall AWS Cryptography and Privacy Amazon Research Awards

Recipient

University

Research title

Christopher Brzuska

Aalto University

Secure Messaging: Updates Efficiency & Verification

Tevfik Bultan

University of California, Santa Barbara

Detecting and Quantifying Information Leakages in Crypto Libraries

Muhammed Esgin

Monash University

Practical Post-Quantum Oblivious Pseudorandom Functions Supporting Verifiability

Nadia Heninger

University of California, San Diego

Bringing Modern Security Guarantees to End-to-End Encrypted Cloud Storage

Tal Malkin

Columbia University

Cryptographic Techniques for Machine Learning

Peihan Miao

Brown University

Advancing Private Set Intersection for Wider Industrial Adoption

Virginia Smith

Carnegie Mellon University

Rethinking Watermark Embedding and Detection for LLMs

Ron Steinfeld

Monash University

Practical Post-Quantum Oblivious Pseudorandom Functions Supporting Verifiability

AWS Database Services

Photo grid shows the recipients of the fall 2023 AWS Database Services Amazon Research Awards

Recipient

University

Research title

Lei Cao

University Of Arizona

SEED: Simple, Efficient, and Effective Data Management via Large Language Models

Natacha Crooks

University Of California, Berkeley

Mammoths Are Slow: The Overlooked Transactions of Graph Data

Samuel Madden

Massachusetts Institute Of Technology

SEED: Simple, Efficient, and Effective Data Management via Large Language Models

Manuel Rigger

National University Of Singapore

Democratizing Database Fuzzing

Kexin Rong

Georgia Institute Of Technology

Dynamic Data Layout Optimization with Worst-case Guarantees

Sustainability

Photo grid shows the recipients of the fall 2023 sustainability Amazon Research Awards

Recipient

University

Research title

Kate Armstrong

New York Botanical Garden

VERDEX: remote sensing of plant biodiversity

Praveen Bollini

University Of Houston

Data-driven design and optimization of selective nanoporous catalysts for biofuel conversion

Brandon Bukowski

Johns Hopkins University

Data-driven design and optimization of selective nanoporous catalysts for biofuel conversion

Alan Edelman

Massachusetts Institute of Technology

Scientific Machine Learning with Application to Probabilistic Climate Forecasting and Sustainability

Kosa Goucher-Lambert

University of California, Berkeley

LCAssist: An Interactive System for Life-Cycle-Informed Sustainable Design Decision-Making

Vikram Iyer

University of Washington - Seattle

Data-Driven Sustainable Polymer Design for Circuits, Packaging, and Actuators

Can Li

Purdue University

Design and Analysis of Sustainable Supply Chains Using Optimization and Large Language Models

Damon Little

New York Botanical Garden

VERDEX: remote sensing of plant biodiversity

Aniruddh Vashisth

University of Washington - Seattle

Data-Driven Sustainable Polymer Design for Circuits, Packaging, and Actuators

Ming Xu

Tsinghua University

Advancing Sustainable Practices in the AI Era: Integrating Large Language Models for Automated Life Cycle Assessment Modeling

Related content

US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLE Employer: AMAZON.COM SERVICES LLC Offered Position: Data Scientist III Job Location: Seattle, Washington Job Number: AMZ9674365 Position Responsibilities: Own the data science elements of various products to help with data-based decision making, product performance optimization, and product performance tracking. Work directly with product managers to help drive the design of the product. Work with Technical Product Managers to help drive the build planning. Translate business problems and products into data requirements and metrics. Initiate the design, development, and implementation of scientific analysis projects or deliverables. Own the analysis, modelling, system design, and development of data science solutions for products. Write documents and make presentations that explain model/analysis results to the business. Bridge the degree of uncertainty in both problem definition and data scientific solution approaches. Build consensus on data, metrics, and analysis to drive business and system strategy. Position Requirements: Master's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science or a related field and two years of experience in the job offered or a related occupation. Employer will accept a Bachelor's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science, or a related field and five years of progressive post-baccalaureate experience in the job offered or a related occupation as equivalent to the Master's degree and two years of experience. Must have one year of experience in the following skills: (1) building statistical models and machine learning models using large datasets from multiple resources; (2) building complex data analyses by leveraging scripting languages including Python, Java, or related scripting language; and (3) communicating with users, technical teams, and management to collect requirements, evaluate alternatives, and develop processes and tools to support the organization. Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation. 40 hours / week, 8:00am-5:00pm, Salary Range $162,752/year to $215,300/year. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, visit: https://www.aboutamazon.com/workplace/employee-benefits.#0000
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, CA, Sunnyvale
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to help build industry-leading technology with multimodal language models for various edge applications. This role is for a Sr. Applied Scientist to lead science efforts for on-device inference pipelines and orchestration, working closely with cross-functional product and engineering teams to invent, design, develop, and validate new AI features for our devices. Key job responsibilities * Lead cross-functional efforts to invent, design, develop, and validate new AI features for our devices * Invent, build, and evaluate model inference and orchestrations to enable new customer experiences * Drive partnerships with product and engineering teams to implement algorithms and models in production * Train and optimize state-of-the-art multimodal models for resource-efficient deployment * Work closely with compiler engineers, hardware architects, data collection, and product teams A day in the life As an Applied Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to science solution design, conduct experiments, explore new algorithms, develop embedded inference pipelines, and discover ways to enrich our customer experiences. You'll have opportunities to collaborate across teams of engineers and scientists to bring algorithms and models to production. About the team Our Devices team specializes in inventing new-to-world, category creating products using advanced machine learning technologies. This role is on a new cross-functional team, whose cadence and structure resembles an efficient and fast-paced startup, with rapid growth and development opportunities.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As an Applied Scientist on our team, you will: * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Collaborate with simulation and robotics experts to translate physical modeling needs into robust, scalable, and maintainable simulation solutions. - Design and implement high-performance simulation modeling and tools for rigid and deformable body simulation. - Identify and optimize performance bottlenecks in simulation pipelines to support real-time and batch simulation workflows. - Help build validation and unit testing pipelines to ensure correctness and physical fidelity of simulation results. - Identify potential sources of sim-to-real gaps and propose modeling and numerical approximations to reduce them. - Stay current with the latest advances in numerical methods, parallel computing, and GPU architectures, and incorporate them into our tools.
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Quantize, prune, distill, finetune Gen AI models to optimize for edge platforms Fundamentally understand Amazon’s underlying Neural Edge Engine to invent optimization techniques Analyze deep learning workloads and provide guidance to map them to Amazon’s Neural Edge Engine Use first principles of Information Theory, Scientific Computing, Deep Learning Theory, Non Equilibrium Thermodynamics Train custom Gen AI models that beat SOTA and paves path for developing production models Collaborate closely with compiler engineers, fellow Applied Scientists, Hardware Architects and product teams to build the best ML-centric solutions for our devices Publish in open source and present on Amazon's behalf at key ML conferences - NeurIPS, ICLR, MLSys.
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Lead end-to-end thermal design for SoC and consumer electronics, spanning package, board, system architecture, and product integration - Perform advanced CFD simulations using tools such as Star-CCM+ or FloEFD to assess feasibility, risks, and mitigation strategies - Plan and execute thermal validation for devices and SoC packages, ensuring compliance with safety, reliability, and qualification requirements - Partner with cross-functional and cross-site teams to influence product decisions, define thermal limits, and establish temperature thresholds - Develop data processing, statistical analysis, and test automation frameworks to improve insight quality, scalability, and engineering efficiency - Communicate thermal risks, trade-offs, and mitigation strategies clearly to engineering leadership to support schedule, performance, and product decisions About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
CA, BC, Vancouver
Success in any organization begins with its people and having a comprehensive understanding of our workforce and how we best utilize their unique skills and experience is paramount to our future success. WISE (Workforce Intelligence powered by Scientific Engineering) delivers the scientific and engineering foundation that powers Amazon's enterprise-wide workforce planning ecosystem. Addressing the critical need for precise workforce planning, WISE enables a closed-loop mechanism essential for ensuring Amazon has the right workforce composition, organizational structure, and geographical footprint to support long-term business needs with a sustainable cost structure. We are looking for a Sr. Applied Scientist to join our ML/AI team to work on Advanced Optimization and LLM solutions. You will partner with Software Engineers, Machine Learning Engineers, Data Engineers and other Scientists, TPMs, Product Managers and Senior Management to help create world-class solutions. We're looking for people who are passionate about innovating on behalf of customers, demonstrate a high degree of product ownership, and want to have fun while they make history. You will leverage your knowledge in machine learning, advanced analytics, metrics, reporting, and analytic tooling/languages to analyze and translate the data into meaningful insights. You will have end-to-end ownership of operational and technical aspects of the insights you are building for the business, and will play an integral role in strategic decision-making. Further, you will build solutions leveraging advanced analytics that enable stakeholders to manage the business and make effective decisions, partner with internal teams to identify process and system improvement opportunities. As a tech expert, you will be an advocate for compelling user experiences and will demonstrate the value of automation and data-driven planning tools in the People Experience and Technology space. Key job responsibilities * Engineering execution - drive crisp and timely execution of milestones, consider and advise on key design and technology trade-offs with engineering teams * Priority management - manage diverse requests and dependencies from teams * Process improvements – define, implement and continuously improve delivery and operational efficiency * Stakeholder management – interface with and influence your stakeholders, balancing business needs vs. technical constraints and driving clarity in ambiguous situations * Operational Excellence – monitor metrics and program health, anticipate and clear blockers, manage escalations To be successful on this journey, you love having high standards for yourself and everyone you work with, and always look for opportunities to make our services better.
RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.