“Ambient intelligence" will accelerate advances in general AI

Alexa’s chief scientist on how customer-obsessed science is accelerating general intelligence.

As the world has become more connected, and computing has permeated our surroundings, a new AI paradigm is emerging: ambient intelligence. In this paradigm, our environment responds to our requests and anticipates our needs, provides information or suggests actions, and then recedes into the background.

Rohit Prasad.jpg
Rohit Prasad, Alexa head scientist and senior vice president at Amazon.

This vision of ambient intelligence is not that different from the one on Star Trek. But for most of the last decade, the focus has been reactive assistance — for example, ensuring that customer-initiated requests to Alexa meet customers’ expectations.

In the ambient-intelligence vision, an AI service such as Alexa makes sense of the state of your environment, including devices, sensors, objects, people, and activity around you, to help you in every situation where you need assistance — either reactively (customer initiated) or proactively (AI initiated).

Realizing the ultimate potential of ambient intelligence requires Alexa to bring the best of machine-intelligence capabilities together with the best of human-intelligence capabilities, which is the barometer of general intelligence today.

The most pragmatic definition of general intelligence is the ability to (1) learn multiple tasks jointly, versus modeling each task independently; (2) continually adapt to changes within a set of known tasks, without explicit human supervision; and (3) learn new tasks directly by interacting with end users.

While these general-intelligence characteristics apply to all types of AI systems, for interactive AI services such as Alexa, two more attributes are critical: (1) multisensory and multimodal intelligence — the ability to process data from multiple input sensors (e.g., microphones, cameras, ultrasound), fuse sensor data for improved understanding of customer goals, and generate output in different modalities (e.g., speech, text, image, video); and (2) interaction skills — the ability to converse in a human-like manner, which encompasses not just command of natural language but also the ability to recognize and respond to affect.

What this means for our customers is that Alexa will become

  • More competent: Alexa’s functionalities and skills will expand much faster through multitask intelligence. Additionally, Alexa will improve through self-learning, becoming less reliant on labeled data;
  • More natural and conversational: Alexa interactions will be as free flowing as human interactions through multisensory intelligence, generalizable language models, commonsense reasoning, and affect modeling; 
  • More personalized: Alexa will adapt to each individual using speech and computer vision. Further, customers will be able to directly personalize Alexa explicitly and implicitly;  
  • More insightful and proactive: Alexa will anticipate customer needs through awareness of the shared environment, make suggestions, and even act on customers’ behalf;  
  • More trustworthy:  Alexa will have the same attributes that we cherish in trustworthy people, such as discretion, fairness, and ethical behavior.

In the past year, Alexa has made considerable progress on all these fronts.

More competent

Alexa receives billions of requests per month, and it is critical for it to answer each of these requests to customers’ satisfaction. In 2021, through advances in automatic speech recognition (ASR), natural-language understanding (NLU), and action resolution, Alexa has become 13% more accurate than the previous year — even as the complexity of customer requests has increased.

Alexa has more than 130,000 third-party skills, whose diversity is a testament to their developers’ creativity. Further, it is available in more than 15 language variants across more than 80 countries, most recently Khaleeji Arabic in Saudi Arabia.

Through advances in large pretrained language models, we are making it easier to expand Alexa’s functionality in terms of both skills and languages. Specifically, we have trained an “Alexa Teacher Model,” a large, pretrained, multilingual model with billions of parameters that encodes language as well as salient patterns of interactions with Alexa. Instead of building new task-specific NLU models (e.g., a skill, a feature, or a language) from scratch on task-specific data, we can build them by fine-tuning the Alexa Teacher model, which provides substantial gains in performance from the same amount of task-specific training data.

While today, the Alexa Teacher Model itself is impractical for real-time language understanding, once it is distilled and fine-tuned, it is compact enough to run in real time but remains more accurate than a similar-sized model trained from scratch. The capacity to generalize across tasks, which the language model enables, is one of the hallmarks of general intelligence.

ATM pipeline.png
The Alexa Teacher Model (AlexaTM) pipeline. The Alexa Teacher Model is trained on a large set of GPUs (left), then distilled into smaller variants (center), whose size depends on their uses. The end user adapts a distilled model to its particular use by fine-tuning it on in-domain data (right).

Models derived from the Alexa Teacher Model have helped reduce customer friction in several locales and will help facilitate and scale multilingual and multimodal use cases in coming years.

Still, faster deployment of new functionality is not sufficient. Customer interactions with Alexa are ever evolving, so Alexa needs to improve continuously. To that end, we have expanded Alexa’s self-learning capability — in particular, its ability to automatically learn from implicit feedback, e.g., when a customer cuts Alexa off in order to rephrase a query.

Currently, we have two methods for learning from implicit feedback. One is a mechanism that learns to automatically reformulate the ASR output to ensure a more accurate response, and the other automatically annotates interaction data to enable the retraining of NLU models with minimal human involvement.

At this year’s Conference on Empirical Methods in Natural Language Processing (EMNLP), Alexa AI researchers presented papers reporting our progress on both these fronts.

Learning how to rewrite customer requests requires identifying which successful requests are rephrases of unsuccessful ones. Past work on rephrase detection considered sentences in pairs, determining the likelihood that one is a rephrase of the other. In our EMNLP paper, we explain how to use temporal features of the dialogue history to better identify rephrases, with an accuracy improvement of 28% on one test dataset.

Rephrases.png
Earlier rephrase detection models computed similarity scores between pairs of queries (right), which could lead to inaccuracies. A new model instead uses full dialogue context (left) to more accurately detect rephrases by leveraging session-level semantic information. From “Contextual rephrase detection for reducing friction in dialogue systems”.

In the other paper, we describe a scalable framework for using automatically annotated data to continually update our NLU models. This paper shows how to operationalize our previous work on automatic annotation, to deliver immediate results to our customers.

More natural and conversational

As magical as it is to interact with Alexa by simply saying its name, repeating the name during longer interactions feels unnatural: when we’re talking to other people, we don’t use their names on every turn.

This year, we took a major step toward making interactions with Alexa more natural through Conversation Mode, which leverages Echo Show 10’s camera to enable wake-word-free interactions by improving the detection of device directedness (i.e., the intent of addressing Alexa) — even when there are multiple people in the room, conversing with each other as well as with Alexa.

Conversation Mode uses novel computer vision algorithms to gauge customers’ physical orientations toward the device, which indicate whether they’re addressing Alexa or each other. The combination of visual and audio information dramatically improves device-directed-speech detection relative to either modality used independently. Further, on-device speech recognition using fully neural recurrent-neural-network transducers ensures that Alexa recognizes conversational speech with low latency.

We have also started extending Alexa’s conversational memory, going beyond anaphoric references within an interaction session (e.g., “What is its resolution?” while shopping for TVs) to temporarily maintain memory across sessions in certain situations. For example, for high-consideration purchases such as TVs, Alexa remembers your last interaction and starts off your next interaction where you left off. This capability required us to extend Alexa Conversations, which trains deep-learning-based models on synthetic data automatically generated from a small amount of developer-provided data.

As effective as large neural transformer-based language models are for generating textual responses, they lack the commonsense and knowledge grounding they need to be truly useful in large-scale human-machine interactions. This fall, to help foster the type of invention needed to overcome these challenges, we released the commonsense dialogue dataset, which consists of more than 11,000 newly collected dialogues. In each dialogue, successive turns are related by relationship triples in the public commonsense knowledge graph Conceptnet, such as <doctor, LocateAt, hospital> or <specialist, TypeOf, doctor>.

Commonsense dialogue.png
In each dialogue in the commonsense-dialogue dataset, successive turns are related by relationship triples in the public commonsense knowledge graph Conceptnet, such as <piano, RelatedTo, musical> or <musical, RelatedTo, violin>.

Another way to inject common sense into dialogue models is to enable them to import information from online or other sources as needed, on the fly. At the NeurIPS Workshop on Efficient Natural Language and Speech Processing (ENLSP) earlier this month, Alexa researchers won a best-paper award for doing just that. They propose a few-shot-learning approach to training a knowledge-seeking-turn detector, which can recognize customer questions that can’t be answered through existing API calls.

This year, we also published several papers on affect modeling. At the International Conference on Acoustics, Speech, and Signal Processing, we presented the use of contrastive unsupervised learning to improve emotion recognition when training data is scarce; and at the Spoken Language Technologies conference, we described the adaptation of pretrained language models, which have been so successful at natural-language-processing tasks, to the problem of social and emotional commonsense reasoning.

On the flip side, when human speakers recognize shifts in the emotional states of people they’re talking to, they modify the affect in their responses. At the Speech Synthesis Workshop (SSW11) this summer, we extended our previous work on prosody variation to modify the affective characteristics of synthesized speech.

More personalized

AI’s ability to conform to customers as opposed to the other way around differentiates it from other technological advancements. This fall, we launched multiple new services that allow our customers to personalize AI in a self-serve fashion.

With preference teaching, customers can explicitly teach Alexa which skills should handle weather-related questions, which sports teams they follow, and which cuisines they prefer.

CustomAED_embedding.png
A two-dimensional projection of embeddings produced through Custom Sound Event Detection. New sounds are identified by their location in the embedding space.

With Custom Sound Event Detection, customers can train Alexa to recognize new sounds — such as a doorbell ringing — from just a handful of examples. Custom Sound Event Detection uses proximity in a neural network’s representational space to recognize instances of the same sound.

Custom Event Alerts for Ring Video Doorbell cameras and Spotlight cameras works in a similar way. With just a few examples, customers can train their devices to recognize certain states of affairs in the world — such as a shed door that has been left open.

In August, we introduced adaptive volume for Alexa, which lets Echo devices adjust their volume according to ambient-noise levels, so that the perceived noise level stays consistent for the customer. One of the key elements of the approach is algorithmically separating the speech signal and the noise signal, so that they’re separate inputs to the volume adaptation model.

We also launched adaptive listening for US English, an opt-in feature that gives customers more time to finish speaking before Alexa responds, making Alexa a more accessible, patient listener. For speakers with certain speech impediments, adaptive listening has reduced the friction in their Alexa interactions by more than two-thirds.

Finally, Alexa customers can choose to interact with celebrity personalities such as Amitabh Bachchan, Melissa McCarthy, Samuel L. Jackson, or Shaquille O'Neal. At the end of the year, we even brought holiday cheer to Alexa interactions by launching the festive personality of Santa Claus.

More insightful and proactive

Today, one in four smart-home interactions is initiated by Alexa, due to the expansion of its predictive and proactive features such as hunches and routines.

Since 2018, Alexa hunches have recognized anomalies in customers’ daily routines and suggested corrections — noticing that a light was left on at night and offering to turn it off, for instance. This year, we gave customers the option of making hunches more proactive, so Alexa can act on their behalf. When proactive hunches are enabled, Alexa will turn that light off for you without asking first.

Routines let you initiate a sequence of actions with a single trigger word, rather than issuing the same instructions over and over again. Previously, customers had to specify which actions they wanted to string together. But this year, we began phasing in inferred routines. With inferred routines, Alexa recognizes sequences of actions that customers commonly repeat — such as, say, turning on the kitchen lights, starting the coffee maker, and playing the “Wake Up!” playlist — and suggests combining them into a routine. To save the routine, the customer simply accepts Alexa’s suggestion.

We have also continued to expand latent-goal prediction, where Alexa recognizes the larger customer need implied by an initial request and suggests actions or skills to fulfill that need. For instance, a customer asks, “Who won the Celtics game?”, and after answering, Alexa asks, “Would you like to know when the Celtics are playing next?”

Latent-goal prediction uses pointwise mutual information to measure the likelihood of an interaction pattern in a given context relative to its likelihood across all Alexa traffic, and it uses bandit learning to track whether recommendations are helping or not and suppress underperforming experiences.

We have also introduced visual ID on our latest Echo device, Echo Show 15. With visual ID, Alexa shows notes and other reminders just for you (e.g., “Leave a note for Jack that his new passport has arrived”). Visual ID is also available on Astro, an Alexa-enabled home robot that extends environment and state awareness to your physical space. Astro can follow you playing media or find you to deliver calls, messages, timers, alarms, or reminders. With a Ring Protect prosubscription, Astro can also proactively patrol your home and investigate anomalous activities.

More trustworthy

Preserving customer privacy is an uncompromisable tenet for us and an invention area. Differential privacy in particular is one of our key areas of focus. This year, we won a best-paper award at the annual meeting of the Florida Artificial Intelligence Research Society (FLAIRS) for an approach to improving the performance of machine learning models while still meeting the privacy standards imposed by differential-privacy analysis.

At the Conference of the European Chapter of the Association for Computational Linguistics, we presented a method for protecting privacy by automatically rephrasing training text while preserving their semantic sense, in a way that, again, meets differential-privacy standards.

Biased language models still.jpg
Alexa AI researchers constructed a dataset of more than 23,000 text generation prompts, each consisting of six to nine words of a sentence on Wikipedia. The prompts can be used to test language models for bias.
Credit: Glynis Condon

We want Alexa to work equally well for everyone. To that end, in addition to our partnership with the National Science Foundation in the area of fairness in AI, we are pursuing research into detecting and mitigating inappropriate bias. At the ACM Conference on Fairness, Accountability, and Transparency (FAccT) and the Conference of the European Association for Computational Linguistics, we published a pair of papers on measuring bias in language models and detecting bias in datasets for training models that recognize unreliable news.

The path ahead

I recognize that there are multiple paths to general AI, each with years of fundamental research ahead of it. I believe Alexa and its underlying vision of ambient intelligence offer a pragmatic path to general AI— one where every advancement makes Alexa more useful for our customers in their daily lives.

I am in awe at the rate of invention from the Alexa team in the most difficult circumstances. As we wrap up yet another year of the COVID pandemic, I hope the advances the worldwide community of AI researchers is making in every discipline of AI will help us prevent future pandemics.

Related content

US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking Applied Science Interns and Co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects within robotics. Examples of projects include allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. As an Applied Science Intern/Co-op at Amazon Robotics, you will be working on one or more of our robotic technologies such as autonomous mobile robots, robot manipulators, and computer vision identification technologies. The intern/co-op project(s) and the internship/co-op location are determined by the team the student will be working on. Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, optimization and more. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics We are open to hiring candidates to work out of one of the following locations: North Reading, MA, USA | Seattle, WA, USA | Westborough, MA, USA
CA, BC, Vancouver
Amazon Web Services (AWS) is building a world-class marketing organization that drives awareness and customer engagement with the goal of educating developers, IT and line-of-business professionals, startups, partners, and executive decision makers about AWS services and solutions, their benefits, and differentiation. As the central data and science organization in AWS Marketing, the Data: Science and Engineering (D:SE) team builds measurement products, AI/ML models for targeting, and self-service insights capabilities for AWS Marketing to drive better measurement and personalization, improve data access and analytical self-service, and empower strategic data-driven decisions. We work globally as a central team and establish standards, benchmarks, and best practices for use throughout AWS Marketing. We are looking for a Principal Data Scientist with deep expertise in scaling measurement science, content ranking and rapid experimentation at scale, with strong interest in building scalable solutions in partnership with our engineering organization. You will lead strategic measurement science initiatives across AWS Marketing & Sales ranging anywhere between recommender engines, scaling experimentation and measurement science, real-time inference, and cross-channel orchestration. You are an hands-on innovator who can contribute to advancing Marketing measurement technology in a B2B environment, and push the limits on what’s scientifically possible with a razor sharp focus on measurable customer and business impact. You will work with recognized B2B Marketing Science and AI/ML experts to develop large-scale, high-performing measurement science models and AI/ML capabilities. We are at a pivotal moment in our organization where AI/ML and measurement velocity has reached an unseen momentum, and we need to scale fast in order to maintain it. Your work will be a key input into a few of our key business goals. You will advance the state of the art in measurement at scale. We are open to hiring candidates to work out of one of the following locations: Vancouver, BC, CAN
US, VA, Herndon
Do you love decomposing problems to develop machine learning (ML) products that impact millions of people around the world? Would you enjoy identifying, defining, and building ML software solutions that revolutionize how businesses operate? The Global Practice Organization in Professional Services at Amazon Web Services (AWS) is looking for a Software Development Engineer II to build, deliver, and maintain complex ML products that delight our customers and raise our performance bar. You’ll design fault-tolerant systems that run at massive scale as we continue to innovate best-in-class services and applications in the AWS Cloud. Key job responsibilities Our ML Engineers collaborate across diverse teams, projects, and environments to have a firsthand impact on our global customer base. You’ll bring a passion for the intersection of software development with generative AI and machine learning. You’ll also: - Solve complex technical problems, often ones not solved before, at every layer of the stack. - Design, implement, test, deploy and maintain innovative ML solutions to transform service performance, durability, cost, and security. - Build high-quality, highly available, always-on products. - Research implementations that deliver the best possible experiences for customers. A day in the life As you design and code solutions to help our team drive efficiencies in ML architecture, you’ll create metrics, implement automation and other improvements, and resolve the root cause of software defects. You’ll also: - Build high-impact ML solutions to deliver to our large customer base. - Participate in design discussions, code review, and communicate with internal and external stakeholders. - Work cross-functionally to help drive business solutions with your technical input. - Work in a startup-like development environment, where you’re always working on the most important stuff. About the team The Global Practice Organization for Analytics is a team inside the AWS Professional Services Organization. Our mission in the Global Practice Organization is to be at the forefront of defining machine learning domain strategy, and ensuring the scale of Professional Services' delivery. We define strategic initiatives, provide domain expertise, and oversee the development of high-quality, repeatable offerings that accelerate customer outcomes. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 85,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life harmony. Striking a healthy balance between your personal and professional life is crucial to your happiness and success here. We are a customer-obsessed organization—leaders start with the customer and work backwards. They work vigorously to earn and keep customer trust. As such, this is a customer facing role in a hybrid delivery model. Project engagements include remote delivery methods and onsite engagement that will include travel to customer locations as needed. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded professional and enable them to take on more complex tasks in the future. This is a customer-facing role and you will be required to travel to client locations and deliver professional services as needed. We are open to hiring candidates to work out of one of the following locations: Atlanta, GA, USA | Austin, TX, USA | Boston, MA, USA | Chicago, IL, USA | Herndon, VA, USA | Minneapolis, MN, USA | New York, NC, USA | San Diego, CA, USA | San Francisco, CA, USA | Seattle, WA, USA
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. Key job responsibilities • Develop automated laboratory workflows. • Perform data QC, document results, and communicate to stakeholders. • Maintain updated understanding and knowledge of methods. • Identify and escalate equipment malfunctions; troubleshoot common errors. • Participate in the updating of protocols and database to accurately reflect the current practices. • Maintain equipment and instruments in good operating condition • Adapt to unexpected schedule changes and respond to emergency situations, as needed. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Are you excited about developing generative AI and foundation models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for scientists, engineers and program managers for a variety of roles. The Amazon Robotics software team is seeking a Applied Scientist to focus on large vision and manipulation machine learning models. This includes building multi-viewpoint and time-series computer vision systems. It includes using machine learning to drive hardware movement. It includes building large-scale models using data from many different tasks and scenes. This work spans from basic research such as cross domain training, to experimenting on prototype in the lab, to running wide-scale A/B tests on robots in our facilities. Key job responsibilities * Research vision - Where should we be focusing our efforts * Research delivery – Proving/dis-proving strategies in offline data or in the lab * Production studies - Insights from production data or ad-hoc experimentation. About the team This team invents and runs robots focused on grasping and packing items. These are typically 6-dof style robotic arms. Our work ranges from the long-term-research on basic science to deploying/supporting large production fleets handling billions of items per year. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, VA, Arlington
Amazon launched the Generative AI (GenAI) Innovation Center (GAIIC) in Jun 2023 to help AWS customers accelerate enterprise innovation and success with Generative AI (https://press.aboutamazon.com/2023/6/aws-announces-generative-ai-innovation-center). Customers such as Highspot, Lonely Planet, Ryanair, and Twilio are engaging with the GAI Innovation Center to explore developing generative solutions. GAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As a data scientist at GAIIC, you are proficient in designing and developing advanced Generative AI based solutions to solve diverse customer problems. You will be working with terabytes of text, images, and other types of data to solve real-world problems through Gen AI. You will be working closely with account teams and ML strategists to define the use case, and with other scientists and ML engineers on the team to design experiments, and find new ways to deliver value to the customer. The successful candidate will possess both technical and customer-facing skills that will allow you to be the technical “face” of AWS within our solution providers’ ecosystem/environment as well as directly to end customers. You will be able to drive discussions with senior technical and management personnel within customers and partners. This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. About the team Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Denver, CO, USA
US, VA, Arlington
Amazon’s mission is to be the most customer centric company in the world. The Workforce Staffing (WFS) organization is on the front line of that mission by hiring the hourly fulfillment associates who make that mission a reality. To drive the necessary growth and continued scale of Amazon’s associate needs within a constrained employment environment, Amazon has created the Workforce Intelligence (WFI) team. This team will (re)invent how Amazon attracts, communicates with, and ultimately hires its hourly associates. This team owns multi-layered research and program implementation to drive deep learning, process improvements, and strategic recommendations to global leadership. Are you passionate about data? Do you enjoy questioning the status quo? Do complex and difficult challenges excite you? If yes, this may be the team for you. The Data Scientist will be responsible for creating cutting edge algorithms, predictive and prescriptive models as well as required data models to facilitate WFS at-scale warehouse associate hiring. This role acts as an internal consultant to the marketing, biz ops and candidate experience teams covering responsibilities such as at-scale hiring process improvement, analyzing large scale candidate/associate data and being strategic to providing best candidate hiring experience to WFS warehouse associate candidates. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Sunnyvale
Are you passionate about solving unique customer-facing problem at Amazon scale? Are you excited by developing and productionizing machine learning, deep learning algorithms and leveraging tons of Amazon data to learn and infer customer shopping patterns? Do you enjoy working with a diverse set of engineers, machine learning scientists, product managers and user-experience designers? If so, you have found the right match! Virtual Try On (VTO) at Amazon Fashion & Fitness is looking for an exceptional Applied Scientist to join us to build our next generation virtual try on experience. Our goal is to help customers evaluate how products will fit and flatter their unique self before they ship, transforming customers' shopping into a personalized journey of inspiration, discovery, and evaluation. In this role, you will be responsible for building scalable computer vision and machine learning (CVML) models, and automating their application and expansion to power customer-facing features. Key job responsibilities - Tackle ambiguous problems in Computer Vision and Machine Learning, and drive full life-cycle of CV/ML projects. - Build Computer Vision, Machine Learning and Generative AI models, perform proof-of-concept, experiment, optimize, and deploy your models into production. - Investigate and solve exciting and difficult challenges in Image Generation, 3D Computer Vision, Generative AI, Image Understanding and Deep Learning. - Run A/B experiments, gather data, and perform statistical tests. - Lead development and productionalization of CV, ML, and Gen AI models and algorithms by working across teams. Deliver end to end. - Act as a mentor to other scientists on the team. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
US, CA, Sunnyvale
Are you passionate about solving unique customer-facing problem in the Amazon scale? Are you excited by developing and productizing machine learning, deep learning algorithms and leverage tons of Amazon data to learn and infer customer shopping patterns? Do you enjoy working with a diversity of engineers, machine learning scientists, product managers and user-experience designers? If so, you have found the right match! Fashion is extremely fast-moving, visual, subjective, and it presents numerous unique problem domains such as product recommendations, product discovery and evaluation. The vision for Amazon Fashion is to make Amazon the number one online shopping destination for Fashion customers by providing large selections, inspiring and accurate recommendations and customer experience. The mission of Fit science team as part of Fashion Tech is to innovate and develop scalable ML solutions to provide personalized fit and size recommendation when Amazon Fashion customers evaluate apparels or shoes online. The team is hiring Applied Scientist who has a solid background in applied Machine Learning and a proven record of solving customer-facing problems via scalable ML solutions, and is motivated to grow professionally as an ML scientist. Key job responsibilities - Tackle ambiguous problems in Machine Learning and drive full life-cycle Machine Learning projects. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production. - Run A/B experiments, gather data, and perform statistical tests. - Establish scalable, efficient, automated processes for large-scale data mining, machine-learning model development, model validation and serving. - Work closely with software engineers and product managers to assist in productizing your ML models. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA