More-natural prosody for synthesized speech

Prosody transfer technique addresses the problem of “source speaker leakage”, while prosody selection model better matches prosody to semantic content.

At this year’s Interspeech, the Amazon text-to-speech team presented two new papers about controlling prosody — the rhythm, emphasis, melody, duration, and loudness of speech — in speech synthesis.

One paper, “CopyCat: many-to-many fine-grained prosody transfer for neural text-to-speech”, is about transferring prosody from recorded speech to speech synthesized in a different voice. In particular, it addresses the problem of “source speaker leakage”, in which the speech synthesis model sometimes produces speech in the source speaker’s voice, rather than the target speaker’s voice.

According to listener studies using the industry-standard MUSHRA (multiple stimuli with hidden reference and anchor) methodology, the speech produced by our model improved over the state-of-the-art system's by 47% in terms of naturalness and 14% in retention of speaker identity.

Source reference
Target identity
Speech with target identity + source prosody
Source reference
Target identity
Speech with target identity + source prosody

The other paper, “Dynamic prosody generation for speech synthesis using linguistics-driven acoustic embedding selection”, is about achieving more dynamic and natural intonation in synthesized speech from TTS systems. It describes a model that uses syntactic and semantic properties of the utterance to determine the prosodic features.

Again according to tests using the MUSHRA methodology, our model reduced the discrepancy between the naturalness of synthesized speech and that of recorded speech by about 6% for complex utterances and 20% on the task of long-form reading.

"Does he wear a black suit or a blue one?"

Centroid
Syntactic
BERT
BERT + Syntactic

"Who ate the rest of my pizza?"

Centroid
Syntactic
BERT
BERT + Syntactic

"Get scores, schedules, and listen to live audio streams."

Centroid
Syntactic
BERT
BERT + Syntactic

CopyCat

When prosody transfer (PT) involves very fine-grained characteristics — the inflections of individual words, as opposed to general speaking styles — it’s more likely to suffer from source speaker leakage. This issue is exacerbated when the PT model is trained on non-parallel data — i.e., without having the same utterances spoken by the source and target speaker.

The core of CopyCat is a novel reference encoder, whose inputs are a mel-spectrogram of the source speech (a snapshot of the frequency spectrum); an embedding, or vector representation, of the source speech phonemes (the smallest units of speech); and a vector indicating the speaker’s identity. 

The reference encoder outputs speaker-independent representations of the prosody of the input speech. These prosodic representations are robust to source speaker leakage despite being trained on non-parallel data. In the absence of parallel data, we train the model to transfer prosody from speakers onto themselves. 

CopyCat architecture flowchart
The CopyCat architecture.

During inference, the phonemes of the speech to be synthesized pass first through a phoneme encoder and then to the reference encoder. The output of the reference encoder, together with the encoded phonemes and the speaker identity vector, then passes to the decoder, which generates speech with the target speaker’s voice and the source speaker's prosody.

In order to evaluate the efficacy of our method, we compared CopyCat to a state-of-the-art model over five target voices, onto which the source prosody from 12 different unseen speakers had been transferred. CopyCat showed a statistically significant 47% increase in prosody transfer quality over the baseline. In another evaluation involving native speakers of American English, CopyCat showed a statistically significant 14% improvement over baseline in its ability to retain the target speaker’s identity. CopyCat achieves both the results with a significantly simpler decoder than the baseline requires, with no drop in naturalness. 

Prosody Selection 

Text-to-speech (TTS) has improved dramatically in recent years, but it still lacks the dynamic variation and adaptability of human speech.

One popular way to encode prosody in TTS systems is to use a variational autoencoder (VAE), which learns a distribution of prosodic characteristics from sample speech. Selecting a prosodic style for a synthetic utterance is a matter of picking a point — an acoustic embedding — in that distribution. 

In practice, most VAE-based TTS systems simply choose a point in the center of the distribution — a centroid — for all utterances. But rendering all the samples with the exact same prosody gets monotonous. 

In our Interspeech paper, we present a novel way of exploiting linguistic information to select acoustic embeddings in VAE systems to achieve a more dynamic and natural intonation in TTS systems, particularly for stylistic speech such as the newscaster speaking style.

Syntax, semantics, or both?

We experiment with three different systems for generating vector representations of the inputs to a TTS system, which allows us to explore the impact of both syntax and semantics on the overall quality of speech synthesis.

The first system uses syntactic information only; the second relies solely on BERT embeddings, which capture semantic information about strings of text, on the basis of word co-occurrence in large text corpora; and the third uses a combination of BERT and syntactic information. Based on these representations, our model selects acoustic embeddings to characterize the prosody of synthesized utterances.

To explore whether syntactic information can aid prosody selection, we use the notion of syntactic distance, a measure based on constituency trees, which map syntactic relationships between the words of a sentence. Large syntactic distances correlate with acoustically relevant events such as phrasing breaks or prosodic resets.

A constituency tree featuring syntactic-distance measures.
A constituency tree featuring syntactic-distance measures (orange circles).
credit: Glynis Condon

At left is the constituency tree of the sentence “The brown fox is quick, and it is jumping over the lazy dog”. Parts of speech are labeled according to the Penn part-of-speech tags: “DT”, for instance, indicates a determiner; “VBZ” indicates a third-person singular present verb, while “VBG” indicates a gerund or present participle; and so on.

The structure of the tree indicates syntactic relationships: for instance, “the”, “brown”, and “fox” together compose a noun phrase (NP), while “is” and “quick” compose a verb phrase (VP). 

Syntactic distance is a rank ordering that indicates the difference in the heights, within the tree, of the common ancestors of consecutive words; any values that preserve that ordering are valid.

One valid distance vector for this sentence is d = [0 2 1 3 1 8 7 6 5 4 3 2 1]. The completion of the subject noun phrase (after “fox”) triggers a prosodic reset, reflected in the distance of 3 between “fox” and “is”. There should also be a more emphasized reset at the end of the first clause, represented by the distance of 8 between “quick” and “and”.

We compared VAE models with linguistically informed acoustic-embedding selection against a VAE model that uses centroid selection on two tasks, sentence synthesis and long-form reading.

The sentence synthesis data set had four categories: complex utterances, sentences with compound nouns, and two types of questions, with their characteristic prosody (the rising inflection at the end, for instance): questions beginning with “wh” words (who, what, why, etc.) and “or” questions, which present a choice.

The model that uses syntactic information alone improves on the baseline model across the board, while the addition of semantic information improves performance still further in some contexts. 

On the “wh” questions, the combination of syntactic and semantic data delivered an 8% improvement over the baseline, and on the “or” questions, the improvement was 21%. This demonstrates that questions have closely related syntactic structures, information that can be used to achieve better prosody.

On long-form reading, the syntactic model alone delivered the best results, reducing the gap between the baseline and recorded speech by approximately 20%.

Research areas

Related content

US, WA, Seattle
Amazon's Global Fixed Marketing Campaign Measurement & Optimization (CMO) team is looking for a senior economic expert in causal inference and applied ML to advance the economic measurement, accuracy validation and optimization methodologies of Amazon's global multi-billion dollar fixed marketing spend. This is a thought leadership position to help set the long-term vision, drive methods innovation, and influence cross-org methods alignment. This role is also an expert in modeling and measuring marketing and customer value with proven capacity to innovate, scale measurement, and mentor talent. This candidate will also work closely with senior Fixed Marketing tech, product, finance and business leadership to devise science roadmaps for innovation and simplification, and adoption of insights to influence important resource allocation, fixed marketing spend and prioritization decisions. Excellent communication skills (verbal and written) are required to ensure success of this collaboration. The candidate must be passionate about advancing science for business and customer impact. Key job responsibilities - Advance measurement, accuracy validation, and optimization methodology within Fixed Marketing. - Motivate and drive data generation to size. - Develop novel, innovative and scalable marketing measurement techniques and methodologies. - Enable product and tech development to scale science solutions and approaches. A day in the life - Propose and refine economic and scientific measurement, accuracy validation, and optimization methodology to improve Fixed Marketing models, outputs and business results - Brief global fixed marketing and retails executives about FM measurement and optimization approaches, providing options to address strategic priorities. - Collaborate with and influence the broader scientific methodology community. About the team CMO's vision is to maximizing long-term free cash flow by providing reliable, accurate and useful global fixed marketing measurement and decision support. The team measures and helps optimize the incremental impact of Amazon (Stores, AWS, Devices) fixed marketing investment across TV, Digital, Social, Radio, and many other channels globally. This is a fully self supported team composed of scientists, economists, engineers, and product/program leaders with S-Team visibility. We are open to hiring candidates to work out of one of the following locations: Irvine, CA, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
GB, Cambridge
Our team builds generative AI solutions that will produce some of the future’s most influential voices in media and art. We develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video, with Amazon Game Studios and Alexa, the ground-breaking service that powers the audio for Echo. Do you want to be part of the team developing the future technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language, Audio and Video technology. As an Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and generative AI models to drive the state of the art in audio (and vocal arts) generation. Position Responsibilities: * Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. * Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. * Research and implement novel ML and statistical approaches to add value to the business. * Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR
US, TX, Austin
The Workforce Solutions Analytics and Tech team is looking for a senior Applied Scientist who is interested in solving challenging optimization problems in the labor scheduling and operations efficiency space. We are actively looking to hire senior scientists to lead one or more of these problem spaces. Successful candidates will have a deep knowledge of Operations Research and Machine Learning methods, experience in applying these methods to large-scale business problems, the ability to map models into production-worthy code in Python or Java, the communication skills necessary to explain complex technical approaches to a variety of stakeholders and customers, and the excitement to take iterative approaches to tackle big research challenges. As a member of our team, you'll work on cutting-edge projects that directly impact over a million Amazon associates. This is a high-impact role with opportunities to designing and improving complex labor planning and cost optimization models. The successful candidate will be a self-starter comfortable with ambiguity, with strong attention to detail and outstanding ability in balancing technical leadership with strong business judgment to make the right decisions about model and method choices. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving, be able to measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs. Key job responsibilities • Candidates will be responsible for developing solutions to better manage and optimize flexible labor capacity. The successful candidate should have solid research experience in one or more technical areas of Operations Research or Machine Learning. As a senior scientist, you will also help coach/mentor junior scientists on the team. • In this role, you will be a technical leader in applied science research with significant scope, impact, and high visibility. You will lead science initiatives for strategic optimization and capacity planning. They require superior logical thinkers who are able to quickly approach large ambiguous problems, turn high-level business requirements into mathematical models, identify the right solution approach, and contribute to the software development for production systems. • Invent and design new solutions for scientifically-complex problem areas and identify opportunities for invention in existing or new business initiatives. • Successfully deliver large or critical solutions to complex problems in the support of medium-to-large business goals. • Apply mathematical optimization techniques and algorithms to design optimal or near optimal solution methodologies to be used for labor planning. • Research, prototype, simulate, and experiment with these models and participate in the production level deployment in Python or Java. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Austin, TX, USA | Bellevue, WA, USA | Nashville, TN, USA | Seattle, WA, USA | Tempe, AZ, USA
US, NY, New York
Where will Amazon's growth come from in the next year? What about over the next five? Which product lines are poised to quintuple in size? Are we investing enough in our infrastructure, or too much? How do our customers react to changes in prices, product selection, or delivery times? These are among the most important questions at Amazon today. The Topline Forecasting team in the Supply Chain Optimization Technologies (SCOT) group is looking for innovative, passionate and results-oriented Economists to answer these questions. You will have an opportunity to own the long-run outlook for Amazon’s global consumer business and shape strategic decisions at the highest level. The successful candidate will be able to formalize problem definitions from ambiguous requirements, build econometrics models using Amazon’s world-class data systems, and develop cutting-edge solutions for non-standard problems. Key job responsibilities · Develop new econometric models or improve existing approaches using scalable techniques. · Extract data for analysis and model development from large, complex datasets. · Closely work with engineering teams to build scalable, efficient systems that implement prototypes in production. · Apply economic theory to solve business problems in a fast moving environment. · Distill problem definitions from informal business requirements and communicate technical solutions to senior business leaders. · Drive innovation and best practices in applied research across the Amazon research science community. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. Key job responsibilities On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. A day in the life You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. About the team The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for an Applied Scientist to join our Applied AI team to work on LLM-based solutions. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Scientist to join our Applied AI team to work on LLM-based solutions. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. Key job responsibilities You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. A day in the life On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, MD, Virtual Location - Maryland
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. This is a part time position, 29 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Virtual Location - MD
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Scientist to join our Applied AI team to work on LLM-based solutions. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. Key job responsibilities You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
IN, KA, Bengaluru
Amazon strives to be Earth's most customer-centric company where people can find and discover virtually anything they want to buy online. By giving customers more of what they want - low prices, vast selection, and convenience - Amazon continues to grow and evolve as a world-class e-commerce platform. The AOP team is an integral part of this and strives to provide Analytical Capabilities to fulfil all customer processes in the IN-ECCF regions. We’re seeking a Data Scientist with expertise in a breadth of ML techniques. Your responsibilities will include developing, prototyping and productionizing innovative models using a range of techniques (Supervised/Unsupervised/Reinforcement). We are also looking for innovators capable of using generative AI to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities - Demonstrate thorough technical knowledge on feature engineering of massive datasets, effective exploratory data analysis, and model building using industry standard AI/ML models and working with Large Language Models - Proficiency in both Supervised(Linear/Logistic Regression) and UnSupervised algorithms(k means clustering) - Understand the business reality behind large sets of data and develop meaningful solutions comprising of analytics as well as marketing management. - Work closely with internal stakeholders like the business teams, engineering teams and partner teams and align them with respect to your focus area - Innovate by adapting new modeling techniques and procedures - Passionate about working with huge data sets ( training/fine tuning) and be someone who loves to bring datasets together to answer business questions. You should have deep expertise in creation and management of datasets - Exposure at implementing and operating stable, scalable data flow solutions from production systems into end-user facing applications/reports. These solutions will be fault tolerant, self-healing and adaptive. - Work with distributed machine learning and statistical algorithms to harness enormous volumes of data at scale to serve our customers We are open to hiring candidates to work out of one of the following locations: Bengaluru, KA, IND | Hyderabad, TS, IND
DE, Aachen
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers. We are open to hiring candidates to work out of one of the following locations: Aachen, DEU