More-natural prosody for synthesized speech

Prosody transfer technique addresses the problem of “source speaker leakage”, while prosody selection model better matches prosody to semantic content.

At this year’s Interspeech, the Amazon text-to-speech team presented two new papers about controlling prosody — the rhythm, emphasis, melody, duration, and loudness of speech — in speech synthesis.

One paper, “CopyCat: many-to-many fine-grained prosody transfer for neural text-to-speech”, is about transferring prosody from recorded speech to speech synthesized in a different voice. In particular, it addresses the problem of “source speaker leakage”, in which the speech synthesis model sometimes produces speech in the source speaker’s voice, rather than the target speaker’s voice.

According to listener studies using the industry-standard MUSHRA (multiple stimuli with hidden reference and anchor) methodology, the speech produced by our model improved over the state-of-the-art system's by 47% in terms of naturalness and 14% in retention of speaker identity.

Source reference
Target identity
Speech with target identity + source prosody
Source reference
Target identity
Speech with target identity + source prosody

The other paper, “Dynamic prosody generation for speech synthesis using linguistics-driven acoustic embedding selection”, is about achieving more dynamic and natural intonation in synthesized speech from TTS systems. It describes a model that uses syntactic and semantic properties of the utterance to determine the prosodic features.

Again according to tests using the MUSHRA methodology, our model reduced the discrepancy between the naturalness of synthesized speech and that of recorded speech by about 6% for complex utterances and 20% on the task of long-form reading.

"Does he wear a black suit or a blue one?"

Centroid
Syntactic
BERT
BERT + Syntactic

"Who ate the rest of my pizza?"

Centroid
Syntactic
BERT
BERT + Syntactic

"Get scores, schedules, and listen to live audio streams."

Centroid
Syntactic
BERT
BERT + Syntactic

CopyCat

When prosody transfer (PT) involves very fine-grained characteristics — the inflections of individual words, as opposed to general speaking styles — it’s more likely to suffer from source speaker leakage. This issue is exacerbated when the PT model is trained on non-parallel data — i.e., without having the same utterances spoken by the source and target speaker.

The core of CopyCat is a novel reference encoder, whose inputs are a mel-spectrogram of the source speech (a snapshot of the frequency spectrum); an embedding, or vector representation, of the source speech phonemes (the smallest units of speech); and a vector indicating the speaker’s identity. 

The reference encoder outputs speaker-independent representations of the prosody of the input speech. These prosodic representations are robust to source speaker leakage despite being trained on non-parallel data. In the absence of parallel data, we train the model to transfer prosody from speakers onto themselves. 

CopyCat architecture flowchart
The CopyCat architecture.

During inference, the phonemes of the speech to be synthesized pass first through a phoneme encoder and then to the reference encoder. The output of the reference encoder, together with the encoded phonemes and the speaker identity vector, then passes to the decoder, which generates speech with the target speaker’s voice and the source speaker's prosody.

In order to evaluate the efficacy of our method, we compared CopyCat to a state-of-the-art model over five target voices, onto which the source prosody from 12 different unseen speakers had been transferred. CopyCat showed a statistically significant 47% increase in prosody transfer quality over the baseline. In another evaluation involving native speakers of American English, CopyCat showed a statistically significant 14% improvement over baseline in its ability to retain the target speaker’s identity. CopyCat achieves both the results with a significantly simpler decoder than the baseline requires, with no drop in naturalness. 

Prosody Selection 

Text-to-speech (TTS) has improved dramatically in recent years, but it still lacks the dynamic variation and adaptability of human speech.

One popular way to encode prosody in TTS systems is to use a variational autoencoder (VAE), which learns a distribution of prosodic characteristics from sample speech. Selecting a prosodic style for a synthetic utterance is a matter of picking a point — an acoustic embedding — in that distribution. 

In practice, most VAE-based TTS systems simply choose a point in the center of the distribution — a centroid — for all utterances. But rendering all the samples with the exact same prosody gets monotonous. 

In our Interspeech paper, we present a novel way of exploiting linguistic information to select acoustic embeddings in VAE systems to achieve a more dynamic and natural intonation in TTS systems, particularly for stylistic speech such as the newscaster speaking style.

Syntax, semantics, or both?

We experiment with three different systems for generating vector representations of the inputs to a TTS system, which allows us to explore the impact of both syntax and semantics on the overall quality of speech synthesis.

The first system uses syntactic information only; the second relies solely on BERT embeddings, which capture semantic information about strings of text, on the basis of word co-occurrence in large text corpora; and the third uses a combination of BERT and syntactic information. Based on these representations, our model selects acoustic embeddings to characterize the prosody of synthesized utterances.

To explore whether syntactic information can aid prosody selection, we use the notion of syntactic distance, a measure based on constituency trees, which map syntactic relationships between the words of a sentence. Large syntactic distances correlate with acoustically relevant events such as phrasing breaks or prosodic resets.

A constituency tree featuring syntactic-distance measures.
A constituency tree featuring syntactic-distance measures (orange circles).
credit: Glynis Condon

At left is the constituency tree of the sentence “The brown fox is quick, and it is jumping over the lazy dog”. Parts of speech are labeled according to the Penn part-of-speech tags: “DT”, for instance, indicates a determiner; “VBZ” indicates a third-person singular present verb, while “VBG” indicates a gerund or present participle; and so on.

The structure of the tree indicates syntactic relationships: for instance, “the”, “brown”, and “fox” together compose a noun phrase (NP), while “is” and “quick” compose a verb phrase (VP). 

Syntactic distance is a rank ordering that indicates the difference in the heights, within the tree, of the common ancestors of consecutive words; any values that preserve that ordering are valid.

One valid distance vector for this sentence is d = [0 2 1 3 1 8 7 6 5 4 3 2 1]. The completion of the subject noun phrase (after “fox”) triggers a prosodic reset, reflected in the distance of 3 between “fox” and “is”. There should also be a more emphasized reset at the end of the first clause, represented by the distance of 8 between “quick” and “and”.

We compared VAE models with linguistically informed acoustic-embedding selection against a VAE model that uses centroid selection on two tasks, sentence synthesis and long-form reading.

The sentence synthesis data set had four categories: complex utterances, sentences with compound nouns, and two types of questions, with their characteristic prosody (the rising inflection at the end, for instance): questions beginning with “wh” words (who, what, why, etc.) and “or” questions, which present a choice.

The model that uses syntactic information alone improves on the baseline model across the board, while the addition of semantic information improves performance still further in some contexts. 

On the “wh” questions, the combination of syntactic and semantic data delivered an 8% improvement over the baseline, and on the “or” questions, the improvement was 21%. This demonstrates that questions have closely related syntactic structures, information that can be used to achieve better prosody.

On long-form reading, the syntactic model alone delivered the best results, reducing the gap between the baseline and recorded speech by approximately 20%.

Research areas

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques