More-natural prosody for synthesized speech

Prosody transfer technique addresses the problem of “source speaker leakage”, while prosody selection model better matches prosody to semantic content.

At this year’s Interspeech, the Amazon text-to-speech team presented two new papers about controlling prosody — the rhythm, emphasis, melody, duration, and loudness of speech — in speech synthesis.

One paper, “CopyCat: many-to-many fine-grained prosody transfer for neural text-to-speech”, is about transferring prosody from recorded speech to speech synthesized in a different voice. In particular, it addresses the problem of “source speaker leakage”, in which the speech synthesis model sometimes produces speech in the source speaker’s voice, rather than the target speaker’s voice.

According to listener studies using the industry-standard MUSHRA (multiple stimuli with hidden reference and anchor) methodology, the speech produced by our model improved over the state-of-the-art system's by 47% in terms of naturalness and 14% in retention of speaker identity.

Source reference
Target identity
Speech with target identity + source prosody
Source reference
Target identity
Speech with target identity + source prosody

The other paper, “Dynamic prosody generation for speech synthesis using linguistics-driven acoustic embedding selection”, is about achieving more dynamic and natural intonation in synthesized speech from TTS systems. It describes a model that uses syntactic and semantic properties of the utterance to determine the prosodic features.

Again according to tests using the MUSHRA methodology, our model reduced the discrepancy between the naturalness of synthesized speech and that of recorded speech by about 6% for complex utterances and 20% on the task of long-form reading.

"Does he wear a black suit or a blue one?"

Centroid
Syntactic
BERT
BERT + Syntactic

"Who ate the rest of my pizza?"

Centroid
Syntactic
BERT
BERT + Syntactic

"Get scores, schedules, and listen to live audio streams."

Centroid
Syntactic
BERT
BERT + Syntactic

CopyCat

When prosody transfer (PT) involves very fine-grained characteristics — the inflections of individual words, as opposed to general speaking styles — it’s more likely to suffer from source speaker leakage. This issue is exacerbated when the PT model is trained on non-parallel data — i.e., without having the same utterances spoken by the source and target speaker.

The core of CopyCat is a novel reference encoder, whose inputs are a mel-spectrogram of the source speech (a snapshot of the frequency spectrum); an embedding, or vector representation, of the source speech phonemes (the smallest units of speech); and a vector indicating the speaker’s identity. 

The reference encoder outputs speaker-independent representations of the prosody of the input speech. These prosodic representations are robust to source speaker leakage despite being trained on non-parallel data. In the absence of parallel data, we train the model to transfer prosody from speakers onto themselves. 

CopyCat architecture flowchart
The CopyCat architecture.

During inference, the phonemes of the speech to be synthesized pass first through a phoneme encoder and then to the reference encoder. The output of the reference encoder, together with the encoded phonemes and the speaker identity vector, then passes to the decoder, which generates speech with the target speaker’s voice and the source speaker's prosody.

In order to evaluate the efficacy of our method, we compared CopyCat to a state-of-the-art model over five target voices, onto which the source prosody from 12 different unseen speakers had been transferred. CopyCat showed a statistically significant 47% increase in prosody transfer quality over the baseline. In another evaluation involving native speakers of American English, CopyCat showed a statistically significant 14% improvement over baseline in its ability to retain the target speaker’s identity. CopyCat achieves both the results with a significantly simpler decoder than the baseline requires, with no drop in naturalness. 

Prosody Selection 

Text-to-speech (TTS) has improved dramatically in recent years, but it still lacks the dynamic variation and adaptability of human speech.

One popular way to encode prosody in TTS systems is to use a variational autoencoder (VAE), which learns a distribution of prosodic characteristics from sample speech. Selecting a prosodic style for a synthetic utterance is a matter of picking a point — an acoustic embedding — in that distribution. 

In practice, most VAE-based TTS systems simply choose a point in the center of the distribution — a centroid — for all utterances. But rendering all the samples with the exact same prosody gets monotonous. 

In our Interspeech paper, we present a novel way of exploiting linguistic information to select acoustic embeddings in VAE systems to achieve a more dynamic and natural intonation in TTS systems, particularly for stylistic speech such as the newscaster speaking style.

Syntax, semantics, or both?

We experiment with three different systems for generating vector representations of the inputs to a TTS system, which allows us to explore the impact of both syntax and semantics on the overall quality of speech synthesis.

The first system uses syntactic information only; the second relies solely on BERT embeddings, which capture semantic information about strings of text, on the basis of word co-occurrence in large text corpora; and the third uses a combination of BERT and syntactic information. Based on these representations, our model selects acoustic embeddings to characterize the prosody of synthesized utterances.

To explore whether syntactic information can aid prosody selection, we use the notion of syntactic distance, a measure based on constituency trees, which map syntactic relationships between the words of a sentence. Large syntactic distances correlate with acoustically relevant events such as phrasing breaks or prosodic resets.

A constituency tree featuring syntactic-distance measures.
A constituency tree featuring syntactic-distance measures (orange circles).
credit: Glynis Condon

At left is the constituency tree of the sentence “The brown fox is quick, and it is jumping over the lazy dog”. Parts of speech are labeled according to the Penn part-of-speech tags: “DT”, for instance, indicates a determiner; “VBZ” indicates a third-person singular present verb, while “VBG” indicates a gerund or present participle; and so on.

The structure of the tree indicates syntactic relationships: for instance, “the”, “brown”, and “fox” together compose a noun phrase (NP), while “is” and “quick” compose a verb phrase (VP). 

Syntactic distance is a rank ordering that indicates the difference in the heights, within the tree, of the common ancestors of consecutive words; any values that preserve that ordering are valid.

One valid distance vector for this sentence is d = [0 2 1 3 1 8 7 6 5 4 3 2 1]. The completion of the subject noun phrase (after “fox”) triggers a prosodic reset, reflected in the distance of 3 between “fox” and “is”. There should also be a more emphasized reset at the end of the first clause, represented by the distance of 8 between “quick” and “and”.

We compared VAE models with linguistically informed acoustic-embedding selection against a VAE model that uses centroid selection on two tasks, sentence synthesis and long-form reading.

The sentence synthesis data set had four categories: complex utterances, sentences with compound nouns, and two types of questions, with their characteristic prosody (the rising inflection at the end, for instance): questions beginning with “wh” words (who, what, why, etc.) and “or” questions, which present a choice.

The model that uses syntactic information alone improves on the baseline model across the board, while the addition of semantic information improves performance still further in some contexts. 

On the “wh” questions, the combination of syntactic and semantic data delivered an 8% improvement over the baseline, and on the “or” questions, the improvement was 21%. This demonstrates that questions have closely related syntactic structures, information that can be used to achieve better prosody.

On long-form reading, the syntactic model alone delivered the best results, reducing the gap between the baseline and recorded speech by approximately 20%.

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, WA, Seattle
Job summaryHow can we create a rich, data-driven shopping experience on Amazon? How do we build data models that helps us innovate different ways to enhance customer experience? How do we combine the world's greatest online shopping dataset with Amazon's computing power to create models that deeply understand our customers? Recommendations at Amazon is a way to help customers discover products. Our team's stated mission is to "grow each customer’s relationship with Amazon by leveraging our deep understanding of them to provide relevant and timely product, program, and content recommendations". We strive to better understand how customers shop on Amazon (and elsewhere) and build recommendations models to streamline customers' shopping experience by showing the right products at the right time. Understanding the complexities of customers' shopping needs and helping them explore the depth and breadth of Amazon's catalog is a challenge we take on every day. Using Amazon’s large-scale computing resources you will ask research questions about customer behavior, build models to generate recommendations, and run these models directly on the retail website. You will participate in the Amazon ML community and mentor Applied Scientists and software development engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and the retail business and you will measure the impact using scientific tools. We are looking for passionate, hard-working, and talented Applied scientist who have experience building mission critical, high volume applications that customers love. You will have an enormous opportunity to make a large impact on the design, architecture, and implementation of cutting edge products used every day, by people you know.Key job responsibilitiesScaling state of the art techniques to Amazon-scaleWorking independently and collaborating with SDEs to deploy models to productionDeveloping long-term roadmaps for the team's scientific agendaDesigning experiments to measure business impact of the team's effortsMentoring scientists in the departmentContributing back to the machine learning science community
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
US, MA, North Reading
Job summaryAre you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers who work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling, and fun.Amazon.com empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas.This role is a 3-month internship to join AR full-time (40 hours/week) from May 2023 to August 2023. Amazon Robotics internships opportunities will be based out of the Greater Boston Area in our two state-of-the-art facilities in Westborough, MA and North Reading, MA. Both campuses provide a unique opportunity to have direct access to robotics testing labs and manufacturing facilities.About the teamWe are seeking data scientist interns to help us analyze data, quantify uncertainty, and build machine learning models to make quick prediction.
US, WA, Seattle
Job summaryThis role may be located in Seattle, Irvine, San Francisco or New York City and will require a minimum of 10% travel for in office or offsite meetings.The Games Growth Adverting team is seeking an exceptional Applied Scientist to lead the foundation of a disruptive advertising system set to revolutionize customer acquisition for Game Developers. This is a great opportunity to innovate on the entire breadth of the AdTech funnel, working in close collaboration with multiple science teams across Amazon Ads. You will lead the building of a platform that delivers world-class optimization for price, relevance, and reach; enabling marketers to drive user acquisition for console, mobile, and PC games. The ideal candidate will have a background in NLP, IR, Personalization or AdTech in production. Key job responsibilitiesLead the design and development of large scale, performant machine learning systems in production for various AdTech use casesInfluence the product roadmap using data backed experimentsUse prior background in NLP/IR/large scale deep learning systems to explore the frontiers of supervised/semi-supervised learning enabling generalization across multiple use casesEstablish scalable, efficient, and automated processes for large scale model development, validation, and implementationMentor junior scientists on the teamHave fun working on ground breaking technology with people just as passionate about their work as you!A day in the lifeWhen you join The Games Growth Advertising Team, your creative partners will be some of the best from the games industry. They have built and published hundreds of the most successful video games in history. Your game studio partners are excited to build the next hit games, but they need your help. We are an Amazon team that helps game developers reach more customers who will love their games. It’s always Day-1 at Amazon, but it’s particularly Day-1 in our game growth business, and we’re excited to see what you can do. Inclusive Culture, Work/Life Balance, & Career GrowthWe embrace our differences and are committed to furthering our culture of inclusion. We offer ten employee-led affinity groups with 190 global chapters, innovative benefits, and annual and ongoing learning experiences (including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences). Our team also puts a high value on work-life balance and offers flexible working hours. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. Additionally, our team is dedicated to supporting you with mentorship and pathways for ongoing development. We have a broad mix of experience levels and tenures, and are building an environment that celebrates knowledge sharing and promotes career choice.About the teamGame Growth Advertising applies the principles of Amazonian culture to the world of gaming user acquisition. We believe in a future where everyone is a gamer and everyone can create, compete, collaborate and connect through games, and we are looking for the right people to help us build that future. We want to be the user acquisition tool of choice for game developers across hardware platforms and gaming genres at scale. Using large scale data and state-of-the-art machine learning techniques, we are excited about shaping the future of programmatic advertising.
DE, BW, Tuebingen
Job summaryAre you passionate about solving real-world challenges using cutting-edge artificial intelligence (AI) and machine learning (ML) technology? Would you like to work with some of the best scientists in the field to transition new AI/ML technologies from the research stage into products?As a Data Scientist in our Lablet, you will be working on cutting edge projects in the intersection of computer vision, graphs, fairness, and causal inference. You will be part of an ambitious team of scientists and software engineers with the goal of solving customer problems at scale. You and your team will work backwards from customer problems, and collaborate with other AWS service teams to develop proof of concepts and transition promising new technology into products.Key job responsibilitiesAs a Data Scientist in the AWS Lablet, you will work backwards from real-world customer problems and prototype, develop and productionize innovative ML techniques to help add business value. You will build tools that accelerate development cycles and facilitate maintenance. You will stay up to date with the state-of-the-art ML research and continuously experiment with new techniques in order to keep pushing the boundaries of what is possible. You will advise scientists on architecture, design and technical choices, and promote engineering excellence within the research team.A day in the lifeWe at AWS value individual expression, respect different opinions, and work together to create a culture where each of us is able to contribute fully. Our unique backgrounds and perspectives strengthen our ability to achieve Amazon's mission of being Earth's most customer-centric company.About the teamThe AWS Lablet team and its scientific head Bernhard Schoelkopf are located at the Tubingen site in Germany. Lablets We decided to start Lablets in a meeting with AWS leadership in late 2018 in order to address two needs: (1) tackle hard AI science problems that do not have an immediate product impact yet may present big opportunities for our business in the future, and (2) display AI leadership by top publications visible to AWS customers whose choice of cloud platform is influenced by perceived AI strength as a way to futureproof their choice. We did so with the expectation that (1) and (2) will both require and enable us to attract talent that significantly raises the bar in terms of AI strength. Lablets provide the environment that top AI/ML talent expects while avoiding the trap of a large centralized research lab. By co-locating with outstanding academic ML centers, they enable the type of transformational work and academic visibility that top scientists deliver without copying large industrial research labs that try to build critical academic mass in a less frugal manner, often have limited impact or get academically stale over time once the influx of new top talent stops.Lablets attract top ML talent and enable some of our strongest scientists to do long-term science projects. We aspire to couple the possibility to have real-world customer impact, where Amazon excels, with the academic reputation of Google Brain/Deepmind/FAIR. We recruit scientists who are free in their research within the (well chosen) fields for which we recruit them. We seek to attract and empower scientists who want to shape the ongoing AI revolution. For those scientists, customer impact is a strong benefit.Lablets Solution LabTo further strengthen the transition mechanism over the next two years, we will equip our lablets with LSL (Lablets Solution Lab) teams. We will staff each of these teams with 2-3 AS/MLE/DS and a PMT. Each LSL team is close to its Lablet’s research activities and deeply understands its potential. Its mission is to work closely with customer-facing organizations like SA, MLSL, PMs from other organizations, and customer teams to propose and prototype solutions to customer problems, leveraging Lablets research. To deliver on its mission, the LSL team acts like a specialized ML Solutions Lab (MLSL) to develop small PoCs with representative customers, mainly with internal customers. In addition, the LSL team is responsible for producing PRFAQs with the goal of starting technology deployment projects for the most promising solutions.If you are interested in joining our team please contact yjadidi@.
US, CA, Cupertino
Job summaryThe retail pricing science and research group is a team of scientists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.We are seeking an applied scientist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of economic theory, statistical inference, machine learning and optimization theory to design new methods and pricing strategies to deliver game changing value to our customers. Key job responsibilitiesThe Applied Scientist will partner with senior scientists on the team, the product managers, and the engineers to develop ML models and solutions for our business problems. They build scalable prototypes and design the right simulation and metrics to examine their efficacy. They will represent and advocate their models to the leaders in our organization. A day in the lifeDiscussions with other scientists, as well as with product managers and tech leaders to understand the business problemBrainstorming with other scientists to design the right model for the problem in handDeep dive into the data and find efficient ways to collect and use itModeling and creating working prototypesAnalyze the results and review with partnersPresent journal quality research in Internal and External science forumsAbout the teamThe pricing research group is a team of ML scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.