Astro’s Intelligent Motion brings state-of-the-art navigation to the home

“Body language” and an awareness of social norms help Amazon’s new household robot integrate gracefully into the home.

At a virtual event today, Amazon’s senior vice president for devices, Dave Limp, unveiled his organization’s new lineup of devices, which included Astro, a household robot with home monitoring and Alexa.

Building a robot that can move intelligently around your home is no easy task. When building self-driving cars or robots for industrial applications, you can predefine high-definition maps of the environments they will encounter on the open road or factory floor. But in the home, nothing is predefined, with frequently rearranged furniture and belongings and people and pets always in motion.

When we set out to build Astro, we knew we wanted its motion to be intuitive and graceful, and we wanted it to be able to interact naturally with humans. That meant that we had to account for the dynamism of the home when deciding on Astro’s design, its sensor configuration, its algorithms, and the speed at which it moves. In addition, we had to deliver Astro at a consumer-accessible price point with a highly optimized suite of sensors and sufficient processing power, when the sensors and processors for other industrial robots that operate at similar speeds can cost thousands of dollars.

So how did we create Intelligent Motion for Astro? 

Astro

Perception and mapping

To be able to move around your home, Astro needs to effectively map its surroundings and understand where it is at any given point: this is perception. Astro’s computer vision system observes the world with both visible and infrared light, which gives it robust perception in dynamic environments and varying lighting conditions. As it perceives where it is in a space, Astro uses its suite of navigation and obstacle sensors as inputs to its on-device simultaneous localization and mapping (SLAM) and obstacle avoidance systems. 

The navigation sensors help identify the positions of key landmarks in 3-D space for the SLAM system, such as corners of tables and doorframes, so that Astro can figure out where it is relative to these landmarks. Astro builds a map of the relative positions of these sparse landmarks when it explores your home and then uses the landmarks to update its location as it moves through the home. 

The obstacle sensors help Astro build a detailed map of its immediate surroundings, capturing the distance to obstacles like couches, chairs, walls, and stairs (see figure below). Astro then uses its knowledge of its position from SLAM and its map of obstacles to path plan and interact with its environment, performing complex tasks such as exploring the home and determining boundaries between spaces, following and approaching people, and figuring out where to hang out. We’ll dive deeper into Intelligent Motion’s SLAM and obstacle avoidance systems in a future science blog post.

Astro point cloud.png
Astro’s Intelligent Motion algorithms build a depth map of Astro's surroundings for mapping and path planning.

Real-time planning

Intelligent Motion is all about having Astro make decisions quickly and autonomously. Homes are ever-changing and full of moving obstacles. For that reason, Astro’s knowledge of its world is rarely perfect, so its navigation system has to be able to handle variability. 

Option testing.png
Astro’s path-planning algorithm tests hundreds of options in real time. Blue arrows indicate longer-range route guidance; colored lines represent options for close-range trajectories within the next three seconds. The colors represent scoring of the trajectories across many weighted factors.

As Astro navigates the home, the Intelligent Motion system generates several hundred potential paths several times a second, evaluates each of them, and then makes a determination on how to move. This process factors in the possibility of changes in the environment (e.g., a book bag dropped on the floor), the desired smoothness of the motion path, and the potential for encountering obstacles.

Astro weighs how each choice contributes toward achieving its current goal, whether that’s reaching a person or heading back to its charger. Astro keeps repeating this process while it is navigating, intelligently optimizing based on its latest knowledge of its world. This approach involves novel methods for dimensionality reduction and probabilistic planning that advance the state of the art in the field of consumer robotics. We’ll also cover this more in a future science blog post.

Body language and communication of intent

Controlling speed, acceleration, and the curvature of Astro’s path are important for making sure Astro can move safely, gracefully, and confidently through the home, but Astro needs to do even more when it interacts with humans. Human-robot interaction (HRI) is a rapidly growing area of research, one that Amazon has invested in in its study of consumer robotics. 

Astro builds trust with customers by moving with predictable behaviors, such as signaling its intents through body language. People and pets do the same thing — signaling, for instance, how they plan to move with a slight turn of the head, change in shoulder angle, or change in eye direction. These are signals people pick up on without even realizing it. 

Emulating these patterns, Astro uses natural changes in head angle as it moves around, indicating which way it is going to turn, pointing at the person it is approaching, and more. When we tested these features, the difference in customer experience with and without them was clear. A simple signal executed via well-coordinated screen and body movements is a powerful tool for communicating intent in real time and making Astro’s behavior more natural.

Moving at humanlike speeds

Astro’s ability to interact naturally with people helps make it even more useful in customers’ homes. Astro can tell when an obstacle is a person and make decisions about how to interact appropriately. To do this, Astro has to operate at human-scale speeds and have an awareness of social norms. 

Socially appropriate distance.png
When following a person, Astro maintains a socially appropriate distance.

For example, when Astro approaches a person, Intelligent Motion uses computer vision signals like the approximate position of that person relative to Astro and the direction the person is facing, the stored map for the area, and other inputs from Astro’s navigation and depth sensors to plan a smooth, graceful path that will enable Astro to end up in front of the person, in the person’s line of sight, at a socially appropriate distance. 

If Astro is following a person, Intelligent Motion helps Astro follow at a comfortable strolling pace for an adult, maintaining a socially appropriate distance, and estimating where that person goes when moving out of view so that Astro can move to a point where the person can be seen and followed again. Astro can determine when an obstacle it detects is a person and follow that obstacle instead of avoiding it, even when it moves in and out of Astro’s field of view. This approach involves dynamic obstacle recognition and tracking, path planning, proxemics, and HRI that we’re excited to share more about soon. 

Recovering from difficult situations

Despite its navigation prowess, Astro will still encounter situations that require it to problem-solve to avoid the need for human intervention. Intelligent Motion includes a set of recovery behaviors that can help when Astro encounters challenges to normal path planning, such as a narrow path that is currently blocked. 

To continue with its task in the face of a blocked path, Astro might try backing up until there is enough space to turn around. As part of this process, Astro also determines when it is time ask for help. We know from our internal testing that people don’t mind occasionally helping Astro, though we have also learned that people have limited patience for a robot that gives up too often and is always asking for help. 

Navigation.png
Astro heads for a gap but is blocked, so the planner calculates new waypoints (blue arrows), and the recovery planner finds a way out and onto the new path.

How Intelligent Motion is designed to protect customer privacy

Moving and reacting quickly requires a very fast system, making local processing of data essential. The raw data from the navigation and obstacle sensors is locally processed into a distance measurement and then discarded, without being sent to the cloud.

When Astro saves a new map at the completion of exploration, information derived from its navigation and depth sensors, including a copy of the 2-D obstacle map, is sent to the cloud, where a map of the home is created and stored. A rendering of the map can then be shown in the Astro app. 

This map contains derived information such as the location of walls, rooms, boundaries, furniture, and objects, plus related data such as customer-provided room names. Map data is encrypted in transit to the cloud, where it is securely stored with 256-bit keys, an industry standard for secure encryption. For more information about the way Astro protects customer privacy, visit amazon.com/astroprivacy

What's next?

Astro is Amazon’s first household robot to use Intelligent Motion to gracefully and intuitively interact with people, help customers monitor their homes, bring the power of Alexa to them, and give them back time in their busy lives. 

This is just the beginning for Intelligent Motion, with its navigation and HRI capabilities. We have exciting plans for advancing the science and engineering of Intelligent Motion so that it will improve over time at navigating in homes and serving customers’ needs. We also expect to learn a lot from our customers, who have never had a product quite like Astro in their homes before. Astro’s Intelligent Motion is a brand-new experience that we can’t wait for you to try, and we’re excited to have you join us on the journey.

Research areas

Related content

US, WA, Bellevue
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Diego
We are seeking an exceptional Applied Scientist to join a team of experts in the field of machine learning, and work together to tackle challenging problems across diverse compliance domains. We leverage and train state-of-the-art multi-modal and large-language-models (LLMs) to detect illegal and unsafe products across the Amazon catalog. We work on machine learning problems for multi-modal classification, intent detection, information retrieval, anomaly and fraud detection, and generative AI. This is an exciting and challenging position to deliver scientific innovations into production systems at Amazon-scale to make immediate, meaningful customer impacts while also pursuing ambitious, long-term research. You will work in a highly collaborative environment where you can analyze and process large amounts of image, text and tabular data. You will work on hard science problems that have not been solved before, conduct rapid prototyping to validate your hypothesis, and deploy your algorithmic ideas at scale. There will be something new to learn every day as we work in an environment with rapidly evolving regulations and adversarial actors looking to outwit your best ideas. Key job responsibilities • Design and evaluate state-of-the-art algorithms and approaches in multi-modal classification, large language models (LLMs), intent detection, information retrieval, anomaly and fraud detection, and generative AI • Translate product and CX requirements into measurable science problems and metrics. • Collaborate with product and tech partners and customers to validate hypothesis, drive adoption, and increase business impact • Key author in writing high quality scientific papers in internal and external peer-reviewed conferences. A day in the life - Understanding customer problems, project timelines, and team/project mechanisms - Proposing science formulations and brainstorming ideas with team to solve business problems - Writing code, and running experiments with re-usable science libraries - Reviewing labels and audit results with investigators and operations associates - Sharing science results with science, product and tech partners and customers - Writing science papers for submission to peer-review venues, and reviewing science papers from other scientists in the team. - Contributing to team retrospectives for continuous improvements - Driving science research collaborations and attending study groups with scientists across Amazon About the team We are a team of applied scientists building AI/ML solutions to make Amazon Earth’s most trusted shopping destination for safe and compliant products.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Key job responsibilities You will contribute directly to AI agent development in an engineering management role: leading a software development team focused on our internal platform for acquiring agentic experience at large scale. You will help set direction, align the team’s goals with the broader lab, mentor team members, recruit great people, and stay technically involved. You will be hired as a Member of Technical Staff. About the team Our lab is a small, talent-dense team with the resources and scale of Amazon. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up!
US, WA, Seattle
The AWS Supply Chain organization is looking for a Sr. Manager of Applied Science to lead science and data teams working on innovative AI-powered supply chain solutions. As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. Are you excited about developing state-of-the-art GenAI/Agentic AI based solutions for enterprise applications? As a Sr. Manager of Applied Scientist at AWS Supply Chain, you will bring AI advancements to customer facing enterprise applications. In this role, you will drive the technical vision and strategy for your team while fostering a culture of innovation and scientific excellence. You will be leading a fast-paced, cross-disciplinary team of researchers who are leaders in the field. You will take on challenging problems, distill real requirements, and then deliver solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Key job responsibilities Building and mentoring teams of Applied Scientists, ML Engineers, and Data Scientists. Setting technical direction and research strategy aligned with business goals. Driving innovation in Supply Chains systems using AI/ML models and AI Agents. Collaborating with cross-functional teams to translate research into production. Managing project portfolios and resource allocation.
US, NY, New York
Are you a passionate Applied Scientist (AS) ready to shape the future of digital content creation? At Amazon, we're building Earth's most desired destination for creators to monetize their unique skills, inspire the next generation of customers, and help brands expand their reach. We build innovative products and experiences that drive growth for creators across Amazon's ecosystem. Our team owns the entire Creator product suite, ensuring a cohesive experience, optimizing compensation structures, and launching features that help creators achieve both monetary and non-monetary goals. Key job responsibilities As an AS on our team, you will: - Handle challenging problems that directly impact millions of creators and customers - Independently collect and analyze data - Develop and deliver scalable predictive models, using any necessary programming, machine learning, and statistical analysis software - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Participate in design and implementation across teams to contribute to initiatives and develop optimal solutions that benefit the creators organization The successful candidate is a self-starter, comfortable with a dynamic, fast-paced environment, and able to think big while paying careful attention to detail. You have deep knowledge of an area/multiple areas of science, with a track record of applying this knowledge to deliver science solutions in a business setting and a demonstrated ability to operate at scale. You excel in a culture of invention and collaboration.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Automated Performance Evaluation (APE) team is a hybrid team of Applied Scientists and Software Development Engineers who develop, deploy and own end-to-end machine learning services for use in the HR and Recruiting functions at Amazon.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional early career research scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Key Job Responsibilities: • Understand and contribute to model compression techniques (quantization, pruning, distillation, etc.) while developing theoretical understanding of Information Theory and Deep Learning fundamentals • Work with senior researchers to optimize Gen AI models for edge platforms using Amazon's Neural Edge Engine • Study and apply first principles of Information Theory, Scientific Computing, and Non-Equilibrium Thermodynamics to model optimization problems • Assist in research projects involving custom Gen AI model development, aiming to improve SOTA under mentorship • Co-author research papers for top-tier conferences (NeurIPS, ICLR, MLSys) and present at internal research meetings • Collaborate with compiler engineers, Applied Scientists, and Hardware Architects while learning about production ML systems • Participate in reading groups and research discussions to build expertise in efficient AI and edge computing
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.