Astro’s Intelligent Motion brings state-of-the-art navigation to the home

“Body language” and an awareness of social norms help Amazon’s new household robot integrate gracefully into the home.

At a virtual event today, Amazon’s senior vice president for devices, Dave Limp, unveiled his organization’s new lineup of devices, which included Astro, a household robot with home monitoring and Alexa.

Building a robot that can move intelligently around your home is no easy task. When building self-driving cars or robots for industrial applications, you can predefine high-definition maps of the environments they will encounter on the open road or factory floor. But in the home, nothing is predefined, with frequently rearranged furniture and belongings and people and pets always in motion.

When we set out to build Astro, we knew we wanted its motion to be intuitive and graceful, and we wanted it to be able to interact naturally with humans. That meant that we had to account for the dynamism of the home when deciding on Astro’s design, its sensor configuration, its algorithms, and the speed at which it moves. In addition, we had to deliver Astro at a consumer-accessible price point with a highly optimized suite of sensors and sufficient processing power, when the sensors and processors for other industrial robots that operate at similar speeds can cost thousands of dollars.

So how did we create Intelligent Motion for Astro? 

Astro

Perception and mapping

To be able to move around your home, Astro needs to effectively map its surroundings and understand where it is at any given point: this is perception. Astro’s computer vision system observes the world with both visible and infrared light, which gives it robust perception in dynamic environments and varying lighting conditions. As it perceives where it is in a space, Astro uses its suite of navigation and obstacle sensors as inputs to its on-device simultaneous localization and mapping (SLAM) and obstacle avoidance systems. 

The navigation sensors help identify the positions of key landmarks in 3-D space for the SLAM system, such as corners of tables and doorframes, so that Astro can figure out where it is relative to these landmarks. Astro builds a map of the relative positions of these sparse landmarks when it explores your home and then uses the landmarks to update its location as it moves through the home. 

The obstacle sensors help Astro build a detailed map of its immediate surroundings, capturing the distance to obstacles like couches, chairs, walls, and stairs (see figure below). Astro then uses its knowledge of its position from SLAM and its map of obstacles to path plan and interact with its environment, performing complex tasks such as exploring the home and determining boundaries between spaces, following and approaching people, and figuring out where to hang out. We’ll dive deeper into Intelligent Motion’s SLAM and obstacle avoidance systems in a future science blog post.

Astro point cloud.png
Astro’s Intelligent Motion algorithms build a depth map of Astro's surroundings for mapping and path planning.

Real-time planning

Intelligent Motion is all about having Astro make decisions quickly and autonomously. Homes are ever-changing and full of moving obstacles. For that reason, Astro’s knowledge of its world is rarely perfect, so its navigation system has to be able to handle variability. 

Option testing.png
Astro’s path-planning algorithm tests hundreds of options in real time. Blue arrows indicate longer-range route guidance; colored lines represent options for close-range trajectories within the next three seconds. The colors represent scoring of the trajectories across many weighted factors.

As Astro navigates the home, the Intelligent Motion system generates several hundred potential paths several times a second, evaluates each of them, and then makes a determination on how to move. This process factors in the possibility of changes in the environment (e.g., a book bag dropped on the floor), the desired smoothness of the motion path, and the potential for encountering obstacles.

Astro weighs how each choice contributes toward achieving its current goal, whether that’s reaching a person or heading back to its charger. Astro keeps repeating this process while it is navigating, intelligently optimizing based on its latest knowledge of its world. This approach involves novel methods for dimensionality reduction and probabilistic planning that advance the state of the art in the field of consumer robotics. We’ll also cover this more in a future science blog post.

Body language and communication of intent

Controlling speed, acceleration, and the curvature of Astro’s path are important for making sure Astro can move safely, gracefully, and confidently through the home, but Astro needs to do even more when it interacts with humans. Human-robot interaction (HRI) is a rapidly growing area of research, one that Amazon has invested in in its study of consumer robotics. 

Astro builds trust with customers by moving with predictable behaviors, such as signaling its intents through body language. People and pets do the same thing — signaling, for instance, how they plan to move with a slight turn of the head, change in shoulder angle, or change in eye direction. These are signals people pick up on without even realizing it. 

Emulating these patterns, Astro uses natural changes in head angle as it moves around, indicating which way it is going to turn, pointing at the person it is approaching, and more. When we tested these features, the difference in customer experience with and without them was clear. A simple signal executed via well-coordinated screen and body movements is a powerful tool for communicating intent in real time and making Astro’s behavior more natural.

Moving at humanlike speeds

Astro’s ability to interact naturally with people helps make it even more useful in customers’ homes. Astro can tell when an obstacle is a person and make decisions about how to interact appropriately. To do this, Astro has to operate at human-scale speeds and have an awareness of social norms. 

Socially appropriate distance.png
When following a person, Astro maintains a socially appropriate distance.

For example, when Astro approaches a person, Intelligent Motion uses computer vision signals like the approximate position of that person relative to Astro and the direction the person is facing, the stored map for the area, and other inputs from Astro’s navigation and depth sensors to plan a smooth, graceful path that will enable Astro to end up in front of the person, in the person’s line of sight, at a socially appropriate distance. 

If Astro is following a person, Intelligent Motion helps Astro follow at a comfortable strolling pace for an adult, maintaining a socially appropriate distance, and estimating where that person goes when moving out of view so that Astro can move to a point where the person can be seen and followed again. Astro can determine when an obstacle it detects is a person and follow that obstacle instead of avoiding it, even when it moves in and out of Astro’s field of view. This approach involves dynamic obstacle recognition and tracking, path planning, proxemics, and HRI that we’re excited to share more about soon. 

Recovering from difficult situations

Despite its navigation prowess, Astro will still encounter situations that require it to problem-solve to avoid the need for human intervention. Intelligent Motion includes a set of recovery behaviors that can help when Astro encounters challenges to normal path planning, such as a narrow path that is currently blocked. 

To continue with its task in the face of a blocked path, Astro might try backing up until there is enough space to turn around. As part of this process, Astro also determines when it is time ask for help. We know from our internal testing that people don’t mind occasionally helping Astro, though we have also learned that people have limited patience for a robot that gives up too often and is always asking for help. 

Navigation.png
Astro heads for a gap but is blocked, so the planner calculates new waypoints (blue arrows), and the recovery planner finds a way out and onto the new path.

How Intelligent Motion is designed to protect customer privacy

Moving and reacting quickly requires a very fast system, making local processing of data essential. The raw data from the navigation and obstacle sensors is locally processed into a distance measurement and then discarded, without being sent to the cloud.

When Astro saves a new map at the completion of exploration, information derived from its navigation and depth sensors, including a copy of the 2-D obstacle map, is sent to the cloud, where a map of the home is created and stored. A rendering of the map can then be shown in the Astro app. 

This map contains derived information such as the location of walls, rooms, boundaries, furniture, and objects, plus related data such as customer-provided room names. Map data is encrypted in transit to the cloud, where it is securely stored with 256-bit keys, an industry standard for secure encryption. For more information about the way Astro protects customer privacy, visit amazon.com/astroprivacy

What's next?

Astro is Amazon’s first household robot to use Intelligent Motion to gracefully and intuitively interact with people, help customers monitor their homes, bring the power of Alexa to them, and give them back time in their busy lives. 

This is just the beginning for Intelligent Motion, with its navigation and HRI capabilities. We have exciting plans for advancing the science and engineering of Intelligent Motion so that it will improve over time at navigating in homes and serving customers’ needs. We also expect to learn a lot from our customers, who have never had a product quite like Astro in their homes before. Astro’s Intelligent Motion is a brand-new experience that we can’t wait for you to try, and we’re excited to have you join us on the journey.

Research areas

Related content

US, WA, Bellevue
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Sr. Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Ideal candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences
US, CA, Sunnyvale
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. We leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. As an Applied Scientist, you will develop and improve machine learning systems that help robots perceive, reason, and act in real-world environments. You will leverage state-of-the-art models (open source and internal research), evaluate them on representative tasks, and adapt/optimize them to meet robustness, safety, and performance needs. You will invent new algorithms where gaps exist. You’ll collaborate closely with research, controls, hardware, and product-facing teams, and your outputs will be used by downstream teams to further customize and deploy on specific robot embodiments. Key job responsibilities - Leverage state-of-the-art models for targeted tasks, environments, and robot embodiments through fine-tuning and optimization. - Execute rapid, rigorous experimentation with reproducible results and solid engineering practices, closing the gap between sim and real environments. - Build and run capability evaluations/benchmarks to clearly profile performance, generalization, and failure modes. - Contribute to the data and training workflow: collection/curation, dataset quality/provenance, and repeatable training recipes. - Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
US, NY, New York
Advertising at Amazon is growing incredibly fast and we are responsible for defining and delivering a collection of advertising products that drive discovery and sales. Amazon Business Ads is equally growing fast ($XXXMs to $XBs) and owns engineering and science for the AB WW ad experience. We build business-to-business (“B2B”) specific ad solutions distributed across retail and ad systems for shopper and advertiser experiences. Some include new ad placements or widgets, creatives, sourcing techniques, ad campaign management capabilities and much more! We consider unique AB qualities which are differentiated from the consumer experience such as varying shopper role types, purchasing complexities based on business size and industry (eg education vs healthcare), AB specific features (eg business discounts, buying policies to restrict and prefer products), and AB buyer behaviors (eg buying in bulk). We are seeking a scientific leader who can drive innovation in complex problem areas and new business initiatives. The ideal candidate will: Technical & Research Requirements: * Demonstrate fluency in Python, R, Matlab or other statistical languages and familiarity with deep learning frameworks like PyTorch, TensorFlow * Lead end-to-end solution development from research to prototyping and experimentation * Write and deploy significant parts of scientifically novel software solutions into production Leadership & Influence: * Drive team's scientific agenda by proposing new initiatives and securing management buy-in including PM, SDM * Mentor colleagues and contribute to their professional development * Build consensus on large projects and influence decisions across different teams in Ads Key Leadership Principles: * Dive Deep: Uncover non-obvious insights in data * Deliver Results: Create solutions aligned with customer and product needs * Learn and Be Curious: Demonstrate self-driven desire to explore new research areas * Earn Trust: Build relationships with stakeholders through understanding business needs
JP, 13, Tokyo
Are you a Graduate Student interested in machine learning, natural language processing, computer vision, automated reasoning, robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Key job responsibilities Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. A day in the life Come teach us a few things, and we’ll teach you a few things as we navigate the most customer-centric company on Earth.
US, NY, New York
At Amazon Selection and Catalog Systems (ASCS), our mission is to power the online buying experience for customers worldwide so they can find, discover, and buy any product they want. We innovate on behalf of our customers to ensure uniqueness and consistency of product identity and to infer relationships between products in Amazon Catalog to drive the selection gateway for the search and browse experiences on the website. We're solving a fundamental AI challenge: establishing product identity and relationships at unprecedented scale. Using Generative AI, Visual Language Models (VLMs), and multimodal reasoning, we determine what makes each product unique and how products relate to one another across Amazon's catalog. The scale is staggering: billions of products, petabytes of multimodal data, millions of sellers, dozens of languages, and infinite product diversity—from electronics to groceries to digital content. The research challenges are immense. GenAI and VLMs hold transformative promise for catalog understanding, but we operate where traditional methods fail: ambiguous problem spaces, incomplete and noisy data, inherent uncertainty, reasoning across both images and textual data, and explaining decisions at scale. Establishing product identities and groupings requires sophisticated models that reason across text, images, and structured data—while maintaining accuracy and trust for high-stakes business decisions affecting millions of customers daily. Amazon's Item and Relationship Platform group is looking for an innovative and customer-focused applied scientist to help us make the world's best product catalog even better. In this role, you will partner with technology and business leaders to build new state-of-the-art algorithms, models, and services to infer product-to-product relationships that matter to our customers. You will pioneer advanced GenAI solutions that power next-generation agentic shopping experiences, working in a collaborative environment where you can experiment with massive data from the world's largest product catalog, tackle problems at the frontier of AI research, rapidly implement and deploy your algorithmic ideas at scale, across millions of customers. Key job responsibilities * Formulate novel research problems at the intersection of GenAI, multimodal learning, and large-scale information retrieval—translating ambiguous business challenges into tractable scientific frameworks * Design and implement leading models leveraging VLMs, foundation models, and agentic architectures to solve product identity, relationship inference, and catalog understanding at billion-product scale * Pioneer explainable AI methodologies that balance model performance with scalability requirements for production systems impacting millions of daily customer decisions * Own end-to-end ML pipelines from research ideation to production deployment—processing petabytes of multimodal data with rigorous evaluation frameworks * Define research roadmaps aligned with business priorities, balancing foundational research with incremental product improvements * Mentor peer scientists and engineers on advanced ML techniques, experimental design, and scientific rigor—building organizational capability in GenAI and multimodal AI * Represent the team in the broader science community—publishing findings, delivering tech talks, and staying at the forefront of GenAI, VLM, and agentic system research
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. As an Applied Scientist in Sensing, you will develop innovative and complex sensing systems for our emerging robotic solutions and improve existing on-robot sensing to optimize performance and enhance customer experience. The ideal candidate has demonstrated experience designing and troubleshooting custom sensor systems from the ground up. They enjoy analytical problem solving and possess practical knowledge of robotic design, fabrication, assembly, and rapid prototyping. They thrive in an interdisciplinary environment and have led the development of complex sensing systems. Key job responsibilities - Design and adapt holistic on-robot sensing solutions for ambiguous problems with fluid requirements - Mentor and develop junior scientists and engineers - Work with an interdisciplinary team to execute product designs from concept to production including specification, design, prototyping, validation and testing - Have responsibility for the designs and performance of a sensing system design - Work with the Operations, Manufacturing, Supply Chain and Quality organizations as well as vendors to ensure a fast development and delivery of the sensing concepts to the team - Develop overall safety concept of the sensing platform - Exhibit role model behaviors of applied science best practices, thorough and predictive analysis and cradle to grave ownership
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will be responsible for maintaining our task management system which supports many internal and external stakeholders and ensures we are able to continue adding orders of magnitude more data and reliability.
US, WA, Bellevue
The Amazon Fulfillment Technology (AFT) Science team is seeking an exceptional Applied Scientist with strong operations research and optimization expertise to develop production solutions for one of the most complex systems in the world: Amazon's Fulfillment Network. At AFT Science, we design, build, and deploy optimization, statistics, machine learning, and GenAI/LLM solutions that power production systems running across Amazon Fulfillment Centers worldwide. We solve a wide range of challenges encountered throughout the network, including labor planning and staffing, pick scheduling, stow guidance, and capacity risk management. We are tasked with developing innovative, scalable, and reliable science-driven production solutions that exceed the published state of the art, enabling systems to run frequently (ranging from every few minutes to every few hours per use case) and continuously across our large-scale network. Key job responsibilities As an Applied Scientist, you will collaborate with other scientists, software engineers, product managers, and operations leaders to develop optimization-driven solutions using a variety of tools and observe direct impact on process efficiency and associate experience in the fulfillment network. Key responsibilities include: - Develop understanding and domain knowledge of operational processes, system architecture and functions, and business requirements - Deep dive into data and code to identify opportunities for continuous improvement and/or disruptive new approaches - Develop scalable mathematical models for production systems to derive optimal or near-optimal solutions for existing and new challenges - Create prototypes and simulations for agile experimentation of devised solutions - Advocate for technical solutions with business stakeholders, engineering teams, and senior leadership - Partner with engineers to integrate prototypes into production systems - Design experiments to test new or incremental solutions launched in production and build metrics to track performance A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team Amazon Fulfillment Technology (AFT) designs, develops, and operates end-to-end fulfillment technology solutions for all Amazon Fulfillment Centers (FCs). We harmonize the physical and virtual worlds so Amazon customers can get what they want, when they want it. The AFT Science team has expertise in operations research, optimization, statistics, machine learning, and GenAI/LLM. We also possess deep domain expertise in operational processes within FCs and their challenges. We prioritize advancements that support AFT tech teams and focus areas rather than specific fields of research or individual business partners. We influence each stage of innovation from inception to deployment, which includes both developing novel solutions and improving existing approaches. Resulting production systems rely on a diverse set of technologies; our teams therefore invest in multiple specialties as the needs of each focus area evolve.
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Own thermal design for consumer electronics products at the system level, proposing thermal architecture and aligning with functional leads - Perform CFD simulations using tools such as Star-CCM+ or FloEFD to assess thermal feasibility, identify risks, and propose mitigation options - Generate data processing, statistical analysis, and test automation scripts to improve data consistency, insight quality, and team efficiency - Plan and execute thermal validation activities for devices and SoC packages, including test setup definition, data review, and issue tracking - Work closely with cross-functional and cross-geo teams to support product decisions, generate thermal specifications, and align on thermal requirements - Prepare clear summaries and reports on thermal results, risks, and observations for review by cross-functional leads About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
US, WA, Seattle
Employer: Amazon.com Services LLC Position: Economist III (multiple positions available) Location: Seattle, Washington Multiple Positions Available: 1. Partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond; 2. Build econometric models using our world class data systems and apply approaches from a variety of skillsets - applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon; 3. Work in a fast moving environment to solve business problems as a member of either a crossfunctional team embedded within a business unit or a central science and economics organization; 4. Develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company; and 5. Utilize deep knowledge in time series econometrics, asset pricing, empirical macroeconomics, or the use of micro and panel data to improve and validate traditional aggregative models. (40 hours / week, 8:00am-5:00pm, Salary Range $159,200.00/year to $215,300.00/year) Amazon.com is an Equal Opportunity – Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation