Astro’s Intelligent Motion brings state-of-the-art navigation to the home

“Body language” and an awareness of social norms help Amazon’s new household robot integrate gracefully into the home.

At a virtual event today, Amazon’s senior vice president for devices, Dave Limp, unveiled his organization’s new lineup of devices, which included Astro, a household robot with home monitoring and Alexa.

Building a robot that can move intelligently around your home is no easy task. When building self-driving cars or robots for industrial applications, you can predefine high-definition maps of the environments they will encounter on the open road or factory floor. But in the home, nothing is predefined, with frequently rearranged furniture and belongings and people and pets always in motion.

When we set out to build Astro, we knew we wanted its motion to be intuitive and graceful, and we wanted it to be able to interact naturally with humans. That meant that we had to account for the dynamism of the home when deciding on Astro’s design, its sensor configuration, its algorithms, and the speed at which it moves. In addition, we had to deliver Astro at a consumer-accessible price point with a highly optimized suite of sensors and sufficient processing power, when the sensors and processors for other industrial robots that operate at similar speeds can cost thousands of dollars.

So how did we create Intelligent Motion for Astro? 

Astro

Perception and mapping

To be able to move around your home, Astro needs to effectively map its surroundings and understand where it is at any given point: this is perception. Astro’s computer vision system observes the world with both visible and infrared light, which gives it robust perception in dynamic environments and varying lighting conditions. As it perceives where it is in a space, Astro uses its suite of navigation and obstacle sensors as inputs to its on-device simultaneous localization and mapping (SLAM) and obstacle avoidance systems. 

The navigation sensors help identify the positions of key landmarks in 3-D space for the SLAM system, such as corners of tables and doorframes, so that Astro can figure out where it is relative to these landmarks. Astro builds a map of the relative positions of these sparse landmarks when it explores your home and then uses the landmarks to update its location as it moves through the home. 

The obstacle sensors help Astro build a detailed map of its immediate surroundings, capturing the distance to obstacles like couches, chairs, walls, and stairs (see figure below). Astro then uses its knowledge of its position from SLAM and its map of obstacles to path plan and interact with its environment, performing complex tasks such as exploring the home and determining boundaries between spaces, following and approaching people, and figuring out where to hang out. We’ll dive deeper into Intelligent Motion’s SLAM and obstacle avoidance systems in a future science blog post.

Astro point cloud.png
Astro’s Intelligent Motion algorithms build a depth map of Astro's surroundings for mapping and path planning.

Real-time planning

Intelligent Motion is all about having Astro make decisions quickly and autonomously. Homes are ever-changing and full of moving obstacles. For that reason, Astro’s knowledge of its world is rarely perfect, so its navigation system has to be able to handle variability. 

Option testing.png
Astro’s path-planning algorithm tests hundreds of options in real time. Blue arrows indicate longer-range route guidance; colored lines represent options for close-range trajectories within the next three seconds. The colors represent scoring of the trajectories across many weighted factors.

As Astro navigates the home, the Intelligent Motion system generates several hundred potential paths several times a second, evaluates each of them, and then makes a determination on how to move. This process factors in the possibility of changes in the environment (e.g., a book bag dropped on the floor), the desired smoothness of the motion path, and the potential for encountering obstacles.

Astro weighs how each choice contributes toward achieving its current goal, whether that’s reaching a person or heading back to its charger. Astro keeps repeating this process while it is navigating, intelligently optimizing based on its latest knowledge of its world. This approach involves novel methods for dimensionality reduction and probabilistic planning that advance the state of the art in the field of consumer robotics. We’ll also cover this more in a future science blog post.

Body language and communication of intent

Controlling speed, acceleration, and the curvature of Astro’s path are important for making sure Astro can move safely, gracefully, and confidently through the home, but Astro needs to do even more when it interacts with humans. Human-robot interaction (HRI) is a rapidly growing area of research, one that Amazon has invested in in its study of consumer robotics. 

Astro builds trust with customers by moving with predictable behaviors, such as signaling its intents through body language. People and pets do the same thing — signaling, for instance, how they plan to move with a slight turn of the head, change in shoulder angle, or change in eye direction. These are signals people pick up on without even realizing it. 

Emulating these patterns, Astro uses natural changes in head angle as it moves around, indicating which way it is going to turn, pointing at the person it is approaching, and more. When we tested these features, the difference in customer experience with and without them was clear. A simple signal executed via well-coordinated screen and body movements is a powerful tool for communicating intent in real time and making Astro’s behavior more natural.

Moving at humanlike speeds

Astro’s ability to interact naturally with people helps make it even more useful in customers’ homes. Astro can tell when an obstacle is a person and make decisions about how to interact appropriately. To do this, Astro has to operate at human-scale speeds and have an awareness of social norms. 

Socially appropriate distance.png
When following a person, Astro maintains a socially appropriate distance.

For example, when Astro approaches a person, Intelligent Motion uses computer vision signals like the approximate position of that person relative to Astro and the direction the person is facing, the stored map for the area, and other inputs from Astro’s navigation and depth sensors to plan a smooth, graceful path that will enable Astro to end up in front of the person, in the person’s line of sight, at a socially appropriate distance. 

If Astro is following a person, Intelligent Motion helps Astro follow at a comfortable strolling pace for an adult, maintaining a socially appropriate distance, and estimating where that person goes when moving out of view so that Astro can move to a point where the person can be seen and followed again. Astro can determine when an obstacle it detects is a person and follow that obstacle instead of avoiding it, even when it moves in and out of Astro’s field of view. This approach involves dynamic obstacle recognition and tracking, path planning, proxemics, and HRI that we’re excited to share more about soon. 

Recovering from difficult situations

Despite its navigation prowess, Astro will still encounter situations that require it to problem-solve to avoid the need for human intervention. Intelligent Motion includes a set of recovery behaviors that can help when Astro encounters challenges to normal path planning, such as a narrow path that is currently blocked. 

To continue with its task in the face of a blocked path, Astro might try backing up until there is enough space to turn around. As part of this process, Astro also determines when it is time ask for help. We know from our internal testing that people don’t mind occasionally helping Astro, though we have also learned that people have limited patience for a robot that gives up too often and is always asking for help. 

Navigation.png
Astro heads for a gap but is blocked, so the planner calculates new waypoints (blue arrows), and the recovery planner finds a way out and onto the new path.

How Intelligent Motion is designed to protect customer privacy

Moving and reacting quickly requires a very fast system, making local processing of data essential. The raw data from the navigation and obstacle sensors is locally processed into a distance measurement and then discarded, without being sent to the cloud.

When Astro saves a new map at the completion of exploration, information derived from its navigation and depth sensors, including a copy of the 2-D obstacle map, is sent to the cloud, where a map of the home is created and stored. A rendering of the map can then be shown in the Astro app. 

This map contains derived information such as the location of walls, rooms, boundaries, furniture, and objects, plus related data such as customer-provided room names. Map data is encrypted in transit to the cloud, where it is securely stored with 256-bit keys, an industry standard for secure encryption. For more information about the way Astro protects customer privacy, visit amazon.com/astroprivacy

What's next?

Astro is Amazon’s first household robot to use Intelligent Motion to gracefully and intuitively interact with people, help customers monitor their homes, bring the power of Alexa to them, and give them back time in their busy lives. 

This is just the beginning for Intelligent Motion, with its navigation and HRI capabilities. We have exciting plans for advancing the science and engineering of Intelligent Motion so that it will improve over time at navigating in homes and serving customers’ needs. We also expect to learn a lot from our customers, who have never had a product quite like Astro in their homes before. Astro’s Intelligent Motion is a brand-new experience that we can’t wait for you to try, and we’re excited to have you join us on the journey.

Research areas

Related content

US, VA, Arlington
The Global Real Estate and Facilities (GREF) team provides real estate transaction expertise, business partnering, space & occupancy planning, design and construction, capital investment program management and facility maintenance and operations for Amazon’s corporate office portfolio across multiple countries. We partner with suppliers to ensure quality, innovation and operational excellence with Amazon’s business and utilize customer driven feedback to continuously improve and exceed employee expectations. Within GREF, the newly formed Global Transformation & Insights (GTI) team is responsible for Customer Insights, Business Insights, Creative, and Communications. We are a group of builders, creators, innovators and go getters. We are customer obsessed, and index high on Ownership. We Think Big, and move fast, and constantly challenge one another while collaborating on "what else", "how might we", and "how can I help". We celebrate the unique perspectives we each bring to the table. We thrive in ambiguity. The ideal Senior Data Scientist candidate thrives in ambiguous environments where the business problem is known, though the technical strategy is not defined. They are able to investigate and develop strategies and concepts to frame a solution set and enable detailed design to commence. They must have strong problem-solving capabilities to isolate, define, resolve complex problems, and implement effective and efficient solutions. They should have experience working in large scale organizations – where data sets are large and complex. They should have high judgement with the ability to balance the right data fidelity with right speed with right confidence level for various stages of analysis and purposes. They should have experience partnering with a broad set of functional teams and levels with the ability to adjust and synthesize their approaches, assumptions, and recommendations to audiences with varying levels of technical knowledge. They are mentors and strong partners with research scientists and other data scientists. Key job responsibilities - Demonstrate advanced technical expertise in data science - Provide scientific and technical leadership within the team - Stay current with emerging technologies and methodologies - Apply data science techniques to solve business problems - Guide and mentor junior data scientists - Share knowledge about scientific advancements with team members - Contribute to the technical growth of the organization - Work on complex, high-impact projects - Influence data science strategy and direction - Collaborate across teams to drive data-driven decision making
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research and implementation that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Implement and optimize control algorithms for robot locomotion - Support development of behaviors that enable robots to traverse diverse terrain - Contribute to methods that integrate stability, locomotion, and manipulation tasks - Help create dynamics models and simulations that enable sim2real transfer of algorithms - Collaborate effectively with multi-disciplinary teams on hardware and algorithms for loco-manipulation
US, WA, Bellevue
Amazon’s Middle Mile Planning Research and Optimization Science group (mmPROS) is looking for a Senior Research Scientist specializing in design and evaluation of algorithms for predictive modeling and optimization applied to large-scale transportation planning systems. This includes the development of novel machine learning and causal modeling techniques to improve on marketplace optimization solutions. Middle Mile Air and Ground transportation represents one of the fastest growing logistics areas within Amazon. Amazon Fulfillment Services transports millions of packages via air and ground and continues to grow year over year. The scale of this operation challenges Amazon to design, build and operate robust transportation networks that minimize the overall operational cost while meeting all customer deadlines. The Middle Mile Planning Research and Optimization Science group is charged with developing an evolving suite of decision support and optimization tools to facilitate the design of efficient air and ground transport networks, optimize the flow of packages within the network to efficiently align network capacity and shipment demand, set prices, and effectively utilize scarce resources, such as aircraft and trucks. Time horizons for these tools vary from years and months for long-term planning to hours and minutes for near-term operational decision making and disruption recovery. These tools rely heavily on mathematical optimization, stochastic simulation, meta-heuristic and machine learning techniques. In addition, Amazon often finds existing techniques do not effectively match our unique business needs which necessitates the innovation and development of new approaches and algorithms to find an adequate solution. As an Applied Scientist responsible for middle mile transportation, you will be working closely with different teams including business leaders and engineers to design and build scalable products operating across multiple transportation modes. You will create experiments and prototype implementations of new learning algorithms and prediction techniques. You will have exposure to top level leadership to present findings of your research. You will also work closely with other scientists and also engineers to implement your models within our production system. You will implement solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility, and make decisions that affect the way we build and integrate algorithms across our product portfolio.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation with single and dual arm manipulation - Leverage simulation and real-world data collection to create large datasets for model development - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for dexterous manipulation
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement whole body control methods for balance, locomotion, and dexterous manipulation - Utilize state-of-the-art in methods in learned and model-based control - Create robust and safe behaviors for different terrains and tasks - Implement real-time controllers with stability guarantees - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for loco-manipulation - Mentor junior engineer and scientists
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities - Build, adapt and evaluate ML models for life sciences applications - Collaborate with a cross-functional team of ML scientists, biologists, software engineers and product managers
TW, TPE, Hsinchu City
Are you passionate about robotics and research? Do you want to solve real customer problems through innovative technology? Do you enjoy working on scalable research and projects in a collaborative team environment? Do you want to see your science solutions directly impact millions of customers worldwide? At Amazon, we hire the best minds in technology to innovate and build on behalf of our customers. Customer obsession is part of our company DNA, which has made us one of the world's most beloved brands. We’re looking for current PhD or Master students with a passion for robotic research and applications to join us as Robotics Applied Scientist II Intern/Co-ops in 2026 to shape the future of robotics and automation at an unprecedented scale across. For these positions, our Robotics teams at Amazon are looking for students with a specialization in one or more of the research areas in robotics such as: robotics, robotics manipulation (e.g., robot arm, grasping, dexterous manipulation, end of arm tools/end effector), autonomous mobile robots, mobile manipulation, movement, autonomous navigation, locomotion, motion/path planning, controls, perception, sensing, robot learning, artificial intelligence, machine learning, computer vision, large language models, human-robot interaction, robotics simulation, optimization, and more! We're looking for curious minds who think big and want to define tomorrow's technology. At Amazon, you'll grow into the high-impact engineer you know you can be, supported by a culture of learning and mentorship. Every day brings exciting new challenges and opportunities for personal growth. By applying to this role, you will be considered for Robotics Applied Scientist II Intern/Co-op (2026) opportunities across various Robotics teams at Amazon with different robotics research focus, with internship positions available for multiple locations, durations (3 to 6+ months), and year-round start dates (winter, spring, summer, fall). Amazon intern and co-op roles follow the same internship structure. "Intern/Internship" wording refers to both interns and co-ops. Amazon internships across all seasons are full-time positions during vacation, and interns should expect to work in office, Monday-Friday, up to 40 hours per week typically between 9am-6pm. Specific team norms around working hours will be communicated by your manager. Interns should not have other employment during the Amazon work-day. Applicants should have a minimum of one quarter/semester/trimester remaining in their studies after their internship concludes. The robotics internship join dates, length, location, and prospective team will be finalized at the time of any applicable job offers. In your application, you will be able to provide your preference of research interests, start dates, internship duration, and location. While your preference will be taken into consideration, we cannot guarantee that we can meet your selection based on several factors including but not limited to the internship availability and business needs of this role.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities As an Applied Science, you will have access to large datasets with billions of images and video to build large-scale machine learning systems. Additionally, you will analyze and model terabytes of text, images, and other types of data to solve real-world problems and translate business and functional requirements into quick prototypes or proofs of concept. We are looking for smart scientists capable of using a variety of domain expertise combined with machine learning and statistical techniques to invent, design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. About the team Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Prime Air is seeking an experienced Applied Science Manager to help develop our advanced Navigation algorithms and flight software applications. In this role, you will lead a team of scientists and engineers to conduct analyses, support cross-functional decision-making, define system architectures and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. This person must be comfortable working with a team of top-notch software developers and collaborating with our science teams. We’re looking for someone who innovates, and loves solving hard problems. You will work hard, have fun, and make history! Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.