Prem Natarajan, Alexa AI vice president of natural understanding, giving a presentation
Prem Natarajan, Alexa AI vice president of natural understanding
Credit: Micron Technology, Inc.

3 questions: Prem Natarajan on issues of AI fairness and bias

Alexa AI vice president of natural understanding Prem Natarajan discusses the upcoming cycle for the National Science Foundation collaboration on fairness in AI, his participation on the Partnership on AI board, and issues related to bias in natural language processing.

A year ago, Amazon and the National Science Foundation (NSF) announced a $20 million collaboration to fund academic research on fairness in AI over a three-year period. Recently, Erwin Gianchandani, deputy assistant director for Computer and Information Science and Engineering at NSF, discussed the work of the first ten recipients of the program’s grants. Here, Prem Natarajan, Alexa AI vice president of natural understanding, and the Amazon executive who helped launch the collaboration with NSF, discusses the next cycle of upcoming proposals from academic researchers, his work with the Partnership on AI, and what can be done to address bias in natural language processing models.

The 2020 award cycle for the Fairness in AI program in conjunction with the NSF recently launched. Full proposals are due by July 13th. What are you hoping to see in the next round of proposals?

We collaborated with the NSF to launch the Fairness in AI program with the goal of promoting academic research in this important aspect of AI. Our primary objective for engaging with academia on issues related to fairness and transparency in AI is to get many different and diverse perspectives focused on the challenge. The teams selected by NSF in the first round are addressing a variety of topics – from principled frameworks for developing and certifying fair AI, to domain-focused applications such as fair recommender systems for foster care services. To that end, I hope that the second round will build upon the success of the first round by bringing an even greater diversity of perspectives on definitions and perceptions of fairness. Without such diversity the entire field of research into fair AI will become a self-defeating exercise.

Another hope I have for the second round, and indeed for all rounds of this program, is that it will drive the creation of a portfolio of open-source artifacts – such as data sets, metrics, tools, and testing methodologies – which all stakeholders in AI can use to promote the use of fair AI. Such readily available artifacts will make it easier for the community to learn from one another, promote the replication of research results, and, ultimately, advance the state of the art more rapidly. Put differently, we hope that open access to the research under this program will form a rising tide that lifts all boats. It also seems natural that methodologies for fairness will benefit from broad and inclusive discussion across relevant academic and scientific communities.

The deadline for this next round of proposal submissions is July 13th. We hope that the response to this round will be even stronger than for the first. NSF selects the recipients, and I am sure NSF’s reviewers are looking forward to a summer of interesting reading!

You are Amazon’s representative on the Partnership on AI (PAI) board of directors. This unique organization has thematic pillars related to safety-critical AI; fair, transparent and accountable AI; AI labor and the economy; collaborations between AI systems and people; social and societal influences of AI; and AI and social good. It’s an ambitious, broad agenda. You’re fairly new in your role with PAI; what most excites you about the work being done there?

The most exciting aspect of the Partnership on AI is that it is a unique multi-sector forum where I get to listen to and learn from the incredible diversity of perspectives – from industry, academia, non-profits, and social justice groups. PAI today counts amongst its members about 59 non-profits, 24 academic institutions, and 18 industrial organizations. While I joined the board just a few months ago, I have already attended several meetings and participated in discussions with other PAI members as well as PAI staff. While every member has their own unique perspective on AI, it’s been really interesting and encouraging to see that we all share the same values and many of the same concerns. It should be of no surprise that the issue of equity is top of mind with a concomitant focus on fairness considerations.

Alexa & Friends Twitch show features Prem Natarajan

Earlier this month, Alexa evangelist Jeff Blankenburg interviewed Prem Natarajan live on the 'Alexa & Friends' Twitch show. In the video, they discuss recent advances in natural understanding , and how those advancements translate into better experiences for customers, developers and third-party device manufacturers.

From a technical perspective, I am excited by the number and quality of research initiatives underway at PAI. Many of these initiatives are of critical importance to the future development of the field of AI. Let me give you a couple of examples.

One is the area of fairness, accountability and transparency. There are several projects underway in this area, but I will mention one that to me exemplifies the kind of work that an organization like PAI can do. PAI researchers interviewed practitioners at twenty different organizations and performed an in-depth case study of how explainable AI is used today. This kind of research is very important to AI practitioners because it gives them a referential basis to assess their own work and to identify useful areas for future contributions.

Another example is ABOUT ML, which is focused on developing and sharing best practices as well as on advancing public understanding of AI. A couple of years ago some researchers had proposed the development of an AI model scorecard, along the lines of the nutritional information you get on the back of most food items we buy today. The scorecard would describe the attributes of the data used to train the models, the way in which it was tested, etc. The motivation behind the scorecard is to give other developers or model builders a sense of the strengths and limitations of the model, so they can better estimate and address potential weaknesses in the model for their target use cases. ABOUT ML goes well beyond such a scorecard, focusing on documentation, provenance of data and code artifacts, and other critical attributes of the model development process. Ultimately, only multisector organizations like PAI can successfully drive this kind of initiative, bringing together people across organizations and sectors.

Lastly, there’s an education role that PAI serves that I believe is unique, serving as the bridge between AI technologists and other stakeholders within society, making sure AI technologists are appropriately factoring in the perspectives and concerns of the other stakeholders within society. Some examples here include PAI’s collaborative work with First Draft, a PAI Partner, to help technologists and journalists at digital platforms address growing issues around manipulated media. PAI also helps those stakeholders understand more about how AI technology works, its strengths and its limitations.

You oversee Alexa’s natural understanding team. Natural language processing models have drawn criticism for capturing common social biases with respect to gender and race. A large body of work is emerging related to bias in word embedding and classifiers, and there are many proposals for countermeasures. Can you describe the challenge of bias in NLP models, and give us insight into some of the countermeasures you think are, or could be, effective?

A word embedding is a vector of real numbers representing that word; the core idea is that words with similar meanings map to vectors that are “close” to each other. Word embeddings have become a central feature of modern NLP. While embeddings can be computed using a variety of different techniques, deep learning techniques have proven to be tremendously effective at numerically representing the semantics of a word and concepts, etc. Today, deep learning based embeddings are used for all kinds of processing, from named entity recognition, to question answering, and natural language generation. As a result, the semantics that these embeddings encode greatly influence how we interpret text, the accuracy of those interpretations, and the actions we take in response to those interpretations.

Bias can also manifest in other ways because any system that is based on data can exhibit a majoritarian bias to it.
Prem Natarajan, Alexa AI VP of natural understanding

As word embeddings became prevalent, researchers naturally started looking into their fragilities and shortcomings. One of those fragilities is that the embeddings derive and encode meaning from context, which means that the meaning of a word is largely controlled by the different contexts in which that word is observed in the training data. While that seems like a reasonable basis for inferring meaning, it leads to undesirable consequences. My friend Kai-Wei Chang at UCLA is one of the early investigators of bias in NLP and he uses the following example: take the vector for doctor and you subtract the vector for man; when you add the vector for woman, you should in principle get the vector for doctor again, or a female doctor. But instead the resulting vector is close to the vector for ‘nurse.’ What this example shows is that the latent biases in human-generated text get encoded into the embeddings. One example of a system that is affected by these biases is natural language generation. Many studies have shown that such biases can result in the generation of text that exhibits the same biases and prejudices as humans, sometimes in an amplified manner. Left unmitigated, such systems could reinforce human biases and stereotypes.

Bias can also manifest in other ways because any system that is based on data can exhibit a majoritarian bias to it. So, for example, different groups in different parts of the world may speak the same language with different dialects, but the most frequent dialect will likely see the best performance only because it forms the major proportion of the training data. But we don’t want dialect or accent to determine how well the system will work for an individual. We want our systems to work equally well for everyone, regardless of geography, dialect, gender, or any other irrelevant factor.

Methodologically, we counter the impact of bias by using a principled approach to characterize the dimensions of bias and associated impact, and by developing techniques that are robust to these biasing factors. For example, it stands to reason that speech recognition systems should ignore parts of the signal that are not useful for recognizing the words that were spoken. It shouldn’t really matter whether the voice is male or female, only the actual words should. Similarly for natural language understanding, we want to be able to understand the queries of different groups of people regardless of the stylistic or syntactic variations of the language used. Scientists at Amazon and elsewhere are exploring a broad variety of approaches such as de-biasing techniques, adversarial invariance, active learning, and selective sampling. Personally, I find the adversarial approaches to both testing and to generating bias or nuisance invariant representations most appealing because of their scalability, but in the next few years, we will all find out what works best for different problems!

Research areas

Related content

US, WA, Seattle
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Join us at the forefront of applied robotics and AI, and be a part of the team that's reshaping the future of intelligent systems. Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers like Pieter Abbeel, Rocky Duan, and Peter Chen to lead key initiatives in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, scence understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between cutting-edge research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives in robotics foundation models, driving breakthrough approaches through hands-on research and development in areas like open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Guide technical direction for specific research initiatives, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with engineering teams to optimize and scale models for real-world applications - Influence technical decisions and implementation strategies within your area of focus A day in the life - Develop and implement novel foundation model architectures, working hands-on with our extensive compute infrastructure - Guide fellow scientists in solving complex technical challenges, from sim2real transfer to efficient multi-task learning - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster - Mentor team members while maintaining significant hands-on contribution to technical solutions Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team, led by pioneering AI researchers Pieter Abbeel, Rocky Duan, and Peter Chen, is building the future of intelligent robotics through groundbreaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IL, Haifa
We’re looking for a Principal Applied Scientist in the Personalization team with experience in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problem Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to drive customer awareness for Amazon’s own brands and help customers discover products they love. Private Brands Discovery is an interdisciplinary team of Scientists and Engineers, who incubate and build disruptive solutions using cutting-edge technology to solve some of the toughest science problems at Amazon. To this end, the team employs methods from Natural Language Processing, Deep learning, multi-armed bandits and reinforcement learning, Bayesian Optimization, causal and statistical inference, and econometrics to drive discovery across the customer journey. Our solutions are crucial for the success of Amazon’s own brands and serve as a beacon for discovery solutions across Amazon. This is a high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and engineers. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.. With a focus on bias for action, this individual will be able to work equally well with Science, Engineering, Economics and business teams. Key job responsibilities - 5+ yrs of relevant, broad research experience after PhD degree or equivalent. - Advanced expertise and knowledge of applying observational causal interference methods - Strong background in statistics methodology, applications to business problems, and/or big data. - Ability to work in a fast-paced business environment. - Strong research track record. - Effective verbal and written communications skills with both economists and non-economist audiences.
DE, Aachen
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The AWS Marketplace & Partner Services Science team is hiring an Applied Scientist to develop science products that support AWS initiatives to grow AWS Partners. The team is seeking candidates with strong background in machine learning and engineering, creativity, curiosity, and great business judgment. As an applied scientist on the team, you will work on targeting and lead prioritization related AI/ML products, recommendation systems, and deliver them into the production ecosystem. You are comfortable with ambiguity and have a deep understanding of ML algorithms and an analytical mindset. You are capable of summarizing complex data and models through clear visual and written explanations. You thrive in a collaborative environment and are passionate about learning. Key job responsibilities - Work with scientists, product managers and engineers to deliver high-quality science products - Experiment with large amounts of data to deliver the best possible science solutions - Design, build, and deploy innovative ML solutions to impact AWS Co-Sell initiatives About the team The AWS Marketplace & Partner Services team is the center of Analytics, Insights, and Science supporting the AWS Specialist Partner Organization on its mission to provide customers with an outstanding experience while working with AWS partners. The Science team supports science models and recommendation systems that are deployed directly to AWS Customers, AWS partners, and internal AWS Sellers.
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists and engineers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! Key job responsibilities We seek strong Applied Scientists with domain expertise in machine learning and deep learning, transformers, generative models, large language models, computer vision and multimodal models. You will devise innovative solutions at scale, pushing the technological and science boundaries. You will guide the design, modeling, and architectural choices of state-of-the-art large language models and multimodal models. You will devise and implement new algorithms and new learning strategies and paradigms. You will be technically hands-on and drive the execution from ideation to productionization. You will work in collaborative environment with other technical and business leaders, to innovate on behalf of the customer.
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You’ll be working with talented scientists, engineers, and technical program managers (TPM) to innovate on behalf of our customers. If you’re fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey!
US, CA, East Palo Alto
The Customer Engagement Technology team leads AI/LLM-driven customer experience transformation using task-oriented dialogue systems. We develop multi-modal, multi-turn, goal-oriented dialog systems that can handle customer issues at Amazon scale across multiple languages. These systems are designed to adapt to changing company policies and invoke correct APIs to automate solutions to customer problems. Additionally, we enhance associate productivity through response/action recommendation, summarization to capture conversation context succinctly, retrieving precise information from documents to provide useful information to the agent, and machine translation to facilitate smoother conversations when the customer and agent speak different languages. Key job responsibilities Research and development of LLM-based chatbots and conversational AI systems for customer service applications. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. 4. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, MA, Boston
The Amazon Dash Cart team is seeking a highly motivated Research Scientist (Level 5) to join our team that is focused on building new technologies for grocery stores. We are a team of scientists invent new algorithms (especially artificial intelligence, computer vision and sensor fusion) to improve customer experiences in grocery shopping. The Amazon Dash Cart is a smart shopping cart that uses sensors to keep track of what a shopper has added. Once done, they can bypass the checkout lane and just walk out. The cart comes with convenience features like a store map, a basket that can weigh produce, and product recommendations. Amazon Dash Cart’s are available at Amazon Fresh, Whole Foods. Learn more about the Dash Cart at https://www.amazon.com/b?ie=UTF8&node=21289116011. Key job responsibilities As a research scientist, you will help solve a variety of technical challenges and mentor other engineers. You will play an active role in translating business and functional requirements into concrete deliverables and build quick prototypes or proofs of concept in partnership with other technology leaders within the team. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. About the team Amazon Dash cart allows shoppers to checkout without lines — you just place the items in the cart and the cart will take care of the rest. When you’re done shopping, you leave the store through a designated dash lane. We charge the payment method in your Amazon account as you walk through the dash lane and send you a receipt. Check it out at https://www.amazon.com/b?ie=UTF8&node=21289116011. Designed and custom-built by Amazonians, our Dash cart uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning.