Customer-obsessed science


Research areas
-
August 4, 2025Translating from natural to structured language, defining truth, and definitive reasoning remain topics of central concern in automated reasoning, but Amazon Web Services’ new Automated Reasoning checks help address all of them.
Featured news
-
2024The difficulty of anonymizing text data hinders the development and deployment of NLP in high-stakes domains that involve private data, such as healthcare and social services. Poorly anonymized sensitive data cannot be easily shared with annotators or external researchers, nor can it be used to train public models. In this work, we explore the feasibility of using synthetic data generated from differentially
-
2024It is often desirable to distill the capabilities of large language models (LLMs) into smaller student models due to compute and memory constraints. One way to do this for classification tasks is via dataset synthesis, which can be accomplished by generating examples of each label from the LLM. Prior approaches to synthesis use few-shot prompting, which relies on the LLM’s parametric knowledge to generate
-
2024Large language models (LLMs) have demonstrated remarkable performance in diverse tasks using zero-shot and few-shot prompting. Even though their capabilities of data synthesis have been studied well in recent years, the generated data suffers from a lack of diversity, less adherence to the prompt, and potential biases that creep into the data from the generator model. In this work, we tackle the challenge
-
2024Intent detection is a critical component of task-oriented dialogue systems (TODS) which enables the identification of suitable actions to address user utterances at each dialog turn. Traditional approaches relied on computationally efficient supervised sentence transformer encoder models, which require substantial training data and struggle with out-of-scope (OOS) detection. The emergence of generative
-
2024Long-form question answering (LFQA) aims at generating in-depth answers to end-user questions, providing relevant information beyond the direct answer. However, existing retrievers are typically optimized towards information that directly targets the question, missing out on such contextual information. Furthermore, there is a lack of training data for relevant context. To this end, we propose and compare
Academia
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all