Customer-obsessed science
Research areas
-
December 5, 20256 min readA multiagent architecture separates data perception, tool knowledge, execution history, and code generation, enabling ML automation that works with messy, real-world inputs.
-
-
-
November 20, 20254 min read
-
October 20, 20254 min read
Featured news
-
PAKDD 20212021Learning from source code usually requires a large amount of labeled data. Despite the possible scarcity of labeled data, the trained model is highly task-specific and lacks transferability to different tasks. In this work, we present effective pre-training strategies on top of a novel graph-based code representation, to produce universal representations for code. Specifically, our graph-based representation
-
Interspeech 20212021Spoken language understanding (SLU) smart assistants such as Amazon Alexa host hundreds of thousands of voice applications (skills) to delight end-users and fulfill their utterance requests. Sometimes utterances fail to be claimed by smart assistants due to system problems such as model incapability or routing errors. The failure may lead to customer frustration, dialog termination and eventually cause
-
ACL-IJCNLP 20212021Existing bias mitigation methods to reduce disparities in model outcomes across cohorts have focused on data augmentation, debiasing model embeddings, or adding fairness-based optimization objectives during training. Separately, certified word substitution robustness methods have been developed to decrease the impact of spurious features and synonym substitutions on model predictions. While their end goals
-
Interspeech 20212021Spoken language understanding (SLU) systems translate voice input commands to semantics which are encoded as an intent and pairs of slot tags and values. Most current SLU systems deploy a cascade of two neural models where the first one maps the input audio to a transcript (ASR) and the second predicts the intent and slots from the transcript (NLU). In this paper, we introduce FANS, a new end-to-end SLU
-
Interspeech 20212021Comprehending the overall intent of an utterance helps a listener recognize the individual words spoken. Inspired by this fact, we perform a novel study of the impact of explicitly incorporating intent representations as additional information to improve a recurrent neural network-transducer (RNN-T) based automatic speech recognition (ASR) system. An audio-to-intent (A2I) model encodes the intent of the
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all