Customer-obsessed science
Research areas
-
December 5, 20256 min readA multiagent architecture separates data perception, tool knowledge, execution history, and code generation, enabling ML automation that works with messy, real-world inputs.
-
-
-
November 20, 20254 min read
-
October 20, 20254 min read
Featured news
-
Interspeech 20212021We introduce Amortized Neural Networks (AmNets), a compute cost- and latency-aware network architecture particularly well-suited for sequence modeling tasks. We apply AmNets to the Recurrent Neural Network Transducer (RNN-T) to reduce compute cost and latency for an automatic speech recognition (ASR) task. The AmNets RNN-T architecture enables the network to dynamically switch between encoder branches on
-
Interspeech 20212021By implicitly recognizing a user based on his/her speech input, speaker identification enables many downstream applications, such as personalized system behavior and expedited shopping checkouts. Based on whether the speech content is constrained or not, both text-dependent (TD) and text-independent (TI) speaker recognition models may be used. We wish to combine the advantages of both types of models through
-
Interspeech 20212021The success of modern deep learning systems is built on two cornerstones, massive amount of annotated training data and advanced computational infrastructure to support large-scale computation. In recent years, the model size of state-of-the-art deep learning systems has rapidly increased and sometimes reached to billions of parameters. Herein we take a close look into this phenomenon and present an empirical
-
SIGIR 2021 International Workshop on Causality in Search and Recommendation2021We propose a novel method to estimate metrics for a ranking policy, based on behavioral signal data (e.g. clicks or viewing of video contents) generated by a second different policy. Building on [1], we prove the counterfactual estimator is unbiased, and discuss its low-variance property. The estimator can be used to evaluate ranking model performance offline, to validate and selection positional bias models
-
Interspeech 20212021End-to-end automatic speech recognition systems map a sequence of acoustic features to text. In modern systems, text is encoded to grapheme subwords which are generated by methods designed for text processing tasks and therefore don’t model or take advantage of the statistics of the acoustic features. Here, we present a novel method for generating grapheme subwords that are derived from phoneme sequences
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all