Customer-obsessed science
Research areas
-
December 5, 20256 min readA multiagent architecture separates data perception, tool knowledge, execution history, and code generation, enabling ML automation that works with messy, real-world inputs.
-
-
-
November 20, 20254 min read
-
October 20, 20254 min read
Featured news
-
IEEE ICIP 20212021On modern e-commerce platforms like Amazon, the number of products is fast growing, precise and efficient product classification becomes a key lever to great customer shopping experience. To tackle the large-scale product classification problem, a major challenge is how to leverage multimodal product information (e.g., image, text). One of the most successful directions is the attention-based deep multimodal
-
KDD 20212021We consider the problem of semantic matching in product search: given a customer query, retrieve all semantically related products from a huge catalog of size 100 million, or more. Because of large catalog spaces and real-time latency constraints, semantic matching algorithms not only desire high recall but also need to have low latency. Conventional lexical matching approaches (e.g., OkapiBM25) exploit
-
ACL-IJCNLP 2021 Workshop on Document-grounded Dialogue and Conversational QA2021Most prior work on task-oriented dialogue systems are restricted to limited coverage of domain APIs. However, users oftentimes have requests that are out of the scope of these APIs. This work focuses on responding to these beyond-API-coverage user turns by incorporating external, unstructured knowledge sources. Our approach works in a pipelined manner with knowledge-seeking turn detection, knowledge selection
-
NAACL 20212021This paper presents an efficient graph-enhanced approach to multi-document summarization (MDS) with an encoder-decoder Transformer model. This model is based on recent advances in pre-training both encoder and decoder on very large text data (Lewis et al., 2019), and it incorporates an efficient encoding mechanism (Beltagy et al., 2020) that avoids the quadratic memory growth typical for traditional Transformers
-
Interspeech 20212021We propose a new end-to-end neural diarization (EEND) system that is based on Conformer, a recently proposed neural architecture that combines convolutional mappings and Transformer to model both local and global dependencies in speech. We first show that data augmentation and convolutional subsampling layers enhance the original self-attentive EEND in the Transformer-based EEND, and then Conformer gives
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all