Applying PECOS to product retrieval and text autocompletion

Two KDD papers demonstrate the power and flexibility of Amazon’s framework for “extreme multilabel ranking”.

In April, our research team at Amazon open-sourced our PECOS framework for extreme multilabel ranking (XMR), which is the general problem of classifying an input when you have an enormous space of candidate classes. PECOS presents a way to solve XMR problems that is both accurate and efficient enough for real-time use.

At this year’s Knowledge Discovery and Data Mining Conference (KDD), members of our team presented two papers that demonstrate both the power and flexibility of the PECOS framework.

Retrieved products.png
A comparison of the top ten products returned by the PECOS-based product retrieval system and two predecessors for the query "rose of jericho plant". Products outlined in green were purchased by at least one customer performing that search; products outlined in red were not purchased.

One applies PECOS to the problem of product retrieval, a use case very familiar to customers at the Amazon Store. The other is a less obvious application: session-aware query autocompletion, in which an autocompletion model — which predicts what a customer is going to type — bases its predictions on the customer’s last few text inputs, as well as on statistics for customers at large.

In both cases, we tailor PECOS’s default models to the tasks at hand and, in comparisons with several strong benchmarks, show that PECOS offers the best combination of accuracy and speed.

The PECOS model

The classic case of XMR would be the classification of a document according to a handful of topics, where there are hundreds of thousands of topics to choose from.

We generalize the idea, however, to any problem that, for a given input, finds a few matches from among a large set of candidates. In product retrieval, for instance, the names of products would be “labels” we apply to a query: “Echo Dot”, “Echo Studio”, and other such names would be labels applied to the query “Smart speaker”.

PECOS adopts a three-step solution to the XMR problem. First is the indexing step, in which PECOS groups labels according to topic. Next is the matching step, which matches an input to a topic (which significantly shrinks the space of candidates). Last comes the ranking step, which reranks the labels in the matched topic, based on features of the input.

PECOS-framework.png
The three-stage PECOS model.
Credit: Stacy Reilly

PECOS comes with default models for each of these steps, which we described in a blog post about the April code release. But users can modify those models as necessary, or create their own and integrate them into the PECOS framework.

Product retrieval

For the product retrieval problem, we adapt one of the matching models that comes standard with PECOS: XR-Linear. Details are in the earlier blog post (and in our KDD paper), but XR-Linear reduces computation time by using B-ary trees — a generalization of binary trees to trees whose nodes have B descendants each. The top node of the tree represents the full label set; the next layer down represents B partitions of the full set; the next layer represents B partitions of each partition in the previous layer, and so on.

Connections between nodes of the trees have associated weights, which are multiplied by features of the input query to produce a probability score. Matching is the process of tracing the most-probable routes through the tree and retrieving the topics at the most-probable leaf nodes. To make this process efficient, we use beam search: i.e., at each layer, we limit the number of nodes whose descendants we consider, a limit known as the beam width.

Beam search.gif
An example of linear ranking with a beam width of two. At each level of the tree, two nodes (green) are selected for further exploration. Each of their descendant nodes is evaluated (orange), and two of those are selected for further exploration.
Credit: Giana Bucchino

In our KDD paper on product retrieval, we vary this general model through weight pruning; i.e., we delete edges whose weights fall below some threshold, reducing the number of options the matching algorithm has to consider as it explores the tree. In the paper, we report experiments with several different weight thresholds and beam widths.

We also experimented with several different sets of input features. One was n-grams of query words. For instance, the query “Echo with screen” would produce the 1-grams “Echo”, “with”, “screen”, the 2-grams “Echo with” and “with screen”, and the 3-gram “Echo with screen”. This sensitizes the matching model to phrases that may carry more information than their constituent words.

Similarly, we used n-grams of input characters. If we use the token “#” to denote the end of a word, the same query would produce the character trigrams “Ech”, “cho”, “ho#”, “with”, “ith”, and so on. Character n-grams helps the model deal with typos or word variants.

Finally, we also used TF-IDF (term frequency–inverse document frequency) features, which normalize the frequency of a word in a given text by its frequency across all texts (which filters out common words like “the”). We found that our model performed best when we used all three sets of features.

As benchmarks in our experiments, we used the state-of-the-art linear model and the state-of-the-art neural model and found that our linear approach outperformed both, with a recall@10 — that is, the number of correct labels among the top ten — that was more than double the neural model’s and almost quadruple the linear model’s. At the same time, our model took about one-sixth as long to train as the neural model.

We also found that our model took an average of only 1.25 milliseconds to complete each query, which is fast enough for deployment in a real-time system like the Amazon Store.

Session-aware query autocompletion

Session-aware query autocompletion uses the history of a customer’s recent queries — not just general statistics for the customer base — to complete new queries. The added contextual information means that it can often complete queries accurately after the customer has typed only one or two letters.

To frame this task as an XMR problem, we consider the case in which the input is a combination of the customer’s previous query and the beginning — perhaps just a few characters — of a new query. The labels are queries that an information retrieval system has seen before.

In this case, PECOS didn’t work well out of the box, and we deduced that the problem was the indexing scheme used to cluster labels by topic. PECOS’s default indexing model embeds inputs, or converts them into vectors, then clusters labels according to proximity in the vector space.

We suspected that this was ineffective when the inputs to the autocompletion model were partial phrases — fragments of words that a user is typing in. So we experimented with an indexing model that instead used data structures known as tries(a variation on “tree” that borrows part of the word “retrieve”).

A trie is a tree whose nodes represent strings of letters, where each descendant node extends its parent node’s string by one letter. So if the top node of the trie represents the letter “P”, its descendants might represent the strings “PA” and “PE”; their descendants might represent the strings “PAN”, “PAD”, “PEN”, “PET”, and so on. With a trie, all the nodes that descend from a common parent constitute a cluster.

Clustering using tries dramatically improved the performance of our model, but it also slowed it down: the strings encoded by tries can get very long, which means that tracing a path through the trie can get very time consuming.

So we adopted a hybrid clustering technique that combines tries with embeddings. The top few layers of the hybrid tree constitute a trie, but the nodes that descend from the lowest of these layers represent strings whose embeddings are near that of the parent node in the vector space.

Tree, Trie, Trie-tree hybrid.cloned.png
Three different ways of clustering the eight strings "a", "ab", "abc", "abd", "abfgh", "abfgi", "bcde", and "bcdf". At left is a conventional tree; in the center is a trie; and at right is a trie-tree hybrid.

To ensure that the embeddings in the hybrid tree preserve some of the sequential information encoded by tries, we varied the standard TF-IDF approach. First we applied it at the character level, rather than at the word level, so that it measured the relative frequency of particular strings of letters, not just words.

Then we weighted the frequency statistics, overcounting character strings that occurred at the beginning of words, relative to those that occurred later. This forced the embedding to mimic the string extension logic of the tries.

Once we’d adopted this indexing scheme, we found that the PECOS model outperformed both the state-of-the-art linear model and the state-of-the art neural model, when measured by both mean reciprocal rank and the BLEU metric used to evaluate machine translation models.

The use of tries still came with a performance penalty: our model took significantly longer to process inputs than the earlier linear model did. But its execution time was still below the threshold for real-time application and significantly lower than the neural model’s.

Related content

US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive scale.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Bellevue
How do you design and provide right incentives for millions of sellers that inbound and ship billions of customer orders? How do you measure sellers' response to /causal impacts of capacity control policies we implemented at Amazon using the state-of-the-art econometric techniques? How do you optimize Amazon’s third-party supply chain using new ideas never implemented at this scale to benefit millions of customers worldwide? How do you design and evaluate seller assistance to drive their success? If these type of questions get your mind racing, we want to hear from you.Supply Chain Optimization Technologies (SCOT) optimizes Amazon’s global supply chain end to end and build systems to deliver billions of products to our customers’ doorsteps faster every year while saving hundreds of millions of dollars using economics, operational research, machine learning, and scalable distributed software on the Cloud. Fulfillment by Amazon (FBA) is an Amazon service for our marketplace third party sellers, where our sellers leverage our world-class facilities and provide customers Prime delivery promise on all their goods.We are looking for the next outstanding economist to join our interdisciplinary team of data scientists, research scientists, applied scientists, economists. The ideal candidate combines econometric acumen with strong business judgment. You have versatile modeling skills and are comfortable extracting insights from observational and experimental data. You translate insights into action through proofs-of-concept and partnerships with engineers and data scientists to productionize. You are excited to learn from and alongside seasoned analysts, scientists, engineers, and business leaders. You are an excellent communicator and effectively translate business ideas and technical findings into business action (and customer delight).Key job responsibilitiesProvide data-driven guidance and recommendations on strategic questions facing the FBA leadershipDesign and implement V0 models and experiments to kickstart new initiatives, thinking, and drive system-level changes across AmazonHelp build a long-term research agenda to understand, break down, and tackle the most stubborn and ambiguous business challengesInfluence business leaders and work closely with other scientists at Amazon to deliver measurable progress and change
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.