Customer-obsessed science
Research areas
-
December 5, 20256 min readA multiagent architecture separates data perception, tool knowledge, execution history, and code generation, enabling ML automation that works with messy, real-world inputs.
-
-
-
November 20, 20254 min read
-
October 20, 20254 min read
Featured news
-
ICCV 20212021Generative models can synthesize photo-realistic images of a single object. For example, for human faces, algorithms learn to model the local shape and shading of the face components, i.e., changes in the brows, eyes, nose, mouth, jaw line, etc. This is possible because all faces have two brows, two eyes, a nose and a mouth, approximately in the same location. The modeling of complex scenes is however much
-
CIKM 20212021Extreme multi-label classification (XMC) aims to learn a model that can tag data points with a subset of relevant labels from an extremely large label set. Real world e-commerce applications like personalized recommendations and product advertising can be formulated as XMC problems, where the objective is to predict for a user a small subset of items from a catalog of several million products. For such
-
CIKM 20212021Tabular data is an invaluable information resource for search, information extraction and question answering about the world. It is critical to understand the semantic concept types for table columns in order to fully exploit the information in tabular data. In this paper, we focus on learning-based approaches for column concept type detection without relying on any metadata or queries to existing knowledge
-
ICCV 20212021Document unwarping attempts to undo physical deformations of the paper and recover a ’flatbed’ scanned document-image for downstream tasks such as OCR. Current state-of-the-art relies on global unwarping of the document which is not robust to local deformation changes. Moreover, a global unwarping often produces spurious warping artifacts in less warped regions to compensate for severe warps present in
-
CIKM 20212021We study the problem of query attribute value extraction, which aims to identify named entities from user queries as diverse surface form attribute values and afterward transform them into formally canonical forms. Such a problem consists of two phases: named entity recognition (NER) and attribute value normalization (AVN). However, existing works only focus on the NER phase but neglect equally important
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all